Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = liquid metal droplet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6349 KiB  
Review
Liquid Metal–Polymer Hydrogel Composites for Sustainable Electronics: A Review
by Abdollah Hajalilou
Molecules 2025, 30(4), 905; https://doi.org/10.3390/molecules30040905 - 15 Feb 2025
Cited by 1 | Viewed by 2173
Abstract
Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, [...] Read more.
Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges. Full article
Show Figures

Figure 1

26 pages, 10695 KiB  
Article
Abrasive Flow Material Removal Mechanism Under Multifield Coupling and the Polishing Method for Complex Titanium Alloy Surfaces
by Yufei Fu, Rui Wang, Zhongfei Wang, Bingjun Zheng and Li Zhang
Processes 2025, 13(2), 416; https://doi.org/10.3390/pr13020416 - 5 Feb 2025
Cited by 1 | Viewed by 838
Abstract
This study addresses the challenge of uneven surface quality on the concave and convex regions during the precision machining of titanium alloy thin-walled complex curved components. An electrostatic field-controlled liquid metal-abrasive flow polishing method is proposed, which is examined through both numerical simulations [...] Read more.
This study addresses the challenge of uneven surface quality on the concave and convex regions during the precision machining of titanium alloy thin-walled complex curved components. An electrostatic field-controlled liquid metal-abrasive flow polishing method is proposed, which is examined through both numerical simulations and experimental investigations. Initially, a material removal model for the liquid metal-abrasive flow under electrostatic field control is developed, with computational fluid dynamics (CFD) and discrete phase models employed for the numerical simulations. Subsequently, the motion characteristics of liquid metal droplets under varying amplitudes of alternating electric fields are experimentally observed within the processing channel. This serves to validate the effectiveness of the proposed method in enhancing surface quality uniformity across the concave and convex regions of titanium alloy thin-walled complex curved components. Our results demonstrate that by controlling the distribution of the electric field in regions with varying flow strengths, the roughness differences between the concave and convex surfaces of the workpiece are reduced to varying degrees. Specifically, in the experimental group subjected to a 24 V alternating electric field, the roughness difference is minimized to 58 nm, representing a 44% reduction compared to conventional abrasive flow polishing. These findings indicate that the proposed electrostatic field-controlled liquid metal-abrasive flow polishing method significantly enhances the uniformity of surface polishing on concave and convex areas of titanium alloy thin-walled complex curved components. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 76482 KiB  
Article
Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel
by Ning Xiao, Haoyu Kong, Qingjie Sun and Ninshu Ma
Materials 2024, 17(24), 6183; https://doi.org/10.3390/ma17246183 - 18 Dec 2024
Cited by 1 | Viewed by 873
Abstract
Narrow-gap arc welding is an efficient method that significantly enhances industrial production efficiency and reduces costs. This study investigates the application of low-alloy steel wire EG70-G in narrow-gap gas metal arc welding (GMAW) on thick plates. Experimental observations were made to examine the [...] Read more.
Narrow-gap arc welding is an efficient method that significantly enhances industrial production efficiency and reduces costs. This study investigates the application of low-alloy steel wire EG70-G in narrow-gap gas metal arc welding (GMAW) on thick plates. Experimental observations were made to examine the arc behavior, droplet transition behavior, and weld formation characteristics of double-wire welding under various process parameters. Additionally, the temperature field of the welding process was simulated using finite element software (ABAQUS 2020). Finally, the microstructure and microhardness of the fusion zone in a double-wire, single-pass filled joint under the different welding speeds were compared and analyzed. The results demonstrate that the use of double-wire GMAW in narrow-gap welding yielded positive outcomes. Optimal settings for wire feeding speed, welding speed, and double-wire lateral spacing significantly enhanced welding quality, effectively preventing side wall non-fusion and poor weld profiles in the welded joints. The microstructure of the fusion zone produced at a higher welding speed (11 mm/s) was finer, resulting in increased microhardness compared to welds obtained at a lower speed (8 mm/s). This is attributed to the shorter duration of the liquid molten pool and the faster cooling rate associated with higher welding speed. This research provides a reference for the practical application of double-wire narrow-gap gas metal arc welding technology. Full article
Show Figures

Figure 1

9 pages, 2073 KiB  
Article
A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer
by Anar Zhexembekova, Seongyeop Lim, Cheongha Lee, Yun-Tae Kim and Chang Young Lee
Molecules 2024, 29(24), 5894; https://doi.org/10.3390/molecules29245894 - 13 Dec 2024
Cited by 2 | Viewed by 1431
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium–indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) [...] Read more.
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium–indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices. Full article
(This article belongs to the Special Issue Synthesis and Application of Multifunctional Nanocomposites)
Show Figures

Figure 1

18 pages, 16263 KiB  
Article
The Deformation of a Liquid Metal Droplet Under Continuous Acceleration in a Variable Cross-Section Groove
by Hanyang Xu, Haojie Dang, Wenchao Tian and Zhao Li
Micromachines 2024, 15(12), 1472; https://doi.org/10.3390/mi15121472 - 4 Dec 2024
Viewed by 3835
Abstract
This paper constructs a numerical simulation model for the deformation of droplets in a variable cross-section groove of a liquid droplet MEMS switch under different directions, amplitudes, frequencies, and waveforms of acceleration. The numerical simulation utilizes the level set method to monitor the [...] Read more.
This paper constructs a numerical simulation model for the deformation of droplets in a variable cross-section groove of a liquid droplet MEMS switch under different directions, amplitudes, frequencies, and waveforms of acceleration. The numerical simulation utilizes the level set method to monitor the deformation surface boundary of the metal droplets. The simulation outcomes manifest that when the negative impact acceleration on the X-axis is 12.9 m/s2, the negative impact acceleration on the Y-axis is 90 m/s2, the negative impact acceleration on the Z-axis is 34.5 m/s2, and the metal droplet interfaces with the metal electrode. The droplet deformation under the effect of a sine wave acceleration signal in the X and Y directions is lower than that under impact acceleration, while in the Z direction, the deformation is higher than that under impact acceleration. The deformation of metal droplets under square wave acceleration is more pronounced than that under sinusoidal wave acceleration. The deformation escalates with the augmentation in square wave amplitude and dwindles with the reduction in square wave acceleration frequency. Furthermore, there exists a phase difference between the deformation curve of the metal droplet and the continuous acceleration signal curve, and the phase difference is dependent of the material properties of the metal droplet. This work elucidates the deformation of the liquid-metal droplets under continuous acceleration and furnishes the foundation for the continuous operation design of MEMS droplet switches. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

11 pages, 950 KiB  
Article
Analysis of Copper and Lead in Aerosols with Laser-Induced Breakdown Spectroscopy
by Daniel Diaz, Alejandra Carreon and David W. Hahn
Photonics 2024, 11(12), 1112; https://doi.org/10.3390/photonics11121112 - 25 Nov 2024
Cited by 1 | Viewed by 1304
Abstract
Laser-induced breakdown spectroscopy (LIBS) was applied to the analysis of aerosolized Cu- and Pb-bearing particles generated from aqueous solutions. A nitrogen-driven nebulizer was utilized to aerosolize Cu- and Pb-spiked solutions. The liquid matrix of the aqueous droplets was evaporated before the LIBS analysis, [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) was applied to the analysis of aerosolized Cu- and Pb-bearing particles generated from aqueous solutions. A nitrogen-driven nebulizer was utilized to aerosolize Cu- and Pb-spiked solutions. The liquid matrix of the aqueous droplets was evaporated before the LIBS analysis, and the remaining gas-phase analyte-rich aerosols were analyzed in a LIBS system that featured a 1064 nm Nd:YAG laser, a Czerny–Turner spectrometer, and an ICCD camera. The Cu and Pb concentrations in the aerosol streams were 0.26–1.29 ppm and 0.40–1.19 ppm, respectively. Laser diffraction and the particle size distributions of the aqueous aerosols were obtained to indirectly demonstrate the evaporation of the liquid matrix. Highly linear calibration curves (R2 = 0.995 for Cu and R2 = 0.987 for Pb) and acceptable limits of detection (2 ppb for Cu and 9 ppb for Pb) and quantification (5 ppb and 28 ppb) were obtained. The applications of the presented methodology include the near-real-time and in situ analysis of wastewater and gas-phase aerosols contaminated with heavy metals. Full article
Show Figures

Figure 1

32 pages, 1410 KiB  
Article
Modeling the Production of Nanoparticles via Detonation—Application to Alumina Production from ANFO Aluminized Emulsions
by Pedro M. S. Santos, Belmiro P. M. Duarte, Nuno M. C. Oliveira, Ricardo A. L. Mendes, José L. S. A. Campos and João M. C. Silva
Modelling 2024, 5(4), 1642-1673; https://doi.org/10.3390/modelling5040086 - 7 Nov 2024
Viewed by 1053
Abstract
This paper investigates the production of nanoparticles via detonation. To extract valuable knowledge regarding this route, a phenomenological model of the process is developed and simulated. This framework integrates the mathematical description of the detonation with a model representing the particulate phenomena. The [...] Read more.
This paper investigates the production of nanoparticles via detonation. To extract valuable knowledge regarding this route, a phenomenological model of the process is developed and simulated. This framework integrates the mathematical description of the detonation with a model representing the particulate phenomena. The detonation process is simulated using a combination of a thermochemical code to determine the Chapman–Jouguet (C-J) conditions, coupled with an approximate spatially homogeneous model that describes the radial expansion of the detonation matrix. The conditions at the C-J point serve as initial conditions for the detonation dynamic model. The Mie–Grüneisen Equation of State (EoS) is used, with the “cold curve” represented by the Jones–Wilkins–Lee Equation of State. The particulate phenomena, representing the formation of metallic oxide nanoparticles from liquid droplets, are described by a Population Balance Equation (PBE) that accounts for the coalescence and coagulation mechanisms. The variables associated with detonation dynamics interact with the kernels of both phenomena. The numerical approach employed to handle the PBE relies on spatial discretization based on a fixed-pivot scheme. The dynamic solution of the models representing both processes is evolved with time using a Differential-Algebraic Equation (DAE) implicit solver. The strategy is applied to simulate the production of alumina nanoparticles from Ammonium Nitrate Fuel Oil aluminized emulsions. The results show good agreement with the literature and experience-based knowledge, demonstrating the tool’s potential in advancing understanding of the detonation route. Full article
Show Figures

Figure 1

17 pages, 11192 KiB  
Article
Microstructure and Mechanical Properties of a Weld Seam from Magnetron High-Current CO2 Welding
by Jun-Yan Miao, Yi-Wen Li, Bo-Wen Ren, Hong-Lei Zhao, Si-Yu Zhang, Yun-Long Chang and Qiang Wang
Crystals 2024, 14(10), 911; https://doi.org/10.3390/cryst14100911 - 21 Oct 2024
Viewed by 1358
Abstract
External magnetic field (EMF)-assisted high-current CO2 welding is beneficial for improving the large spatter and poor performance of the welding heat-affected zone for mild steels under high-current welding specifications. In this paper, the droplet transfer behaviors were determined using a high-speed camera [...] Read more.
External magnetic field (EMF)-assisted high-current CO2 welding is beneficial for improving the large spatter and poor performance of the welding heat-affected zone for mild steels under high-current welding specifications. In this paper, the droplet transfer behaviors were determined using a high-speed camera on a self-developed magnetically controlled CO2 welding system. Based on these welding specifications, a three-dimensional, transient, multi-energy field coupling welding system model to investigate the mechanism of the droplet and molten pool in EMF-assisted welding was developed. The microstructure and mechanical properties of the welded joint were systematically studied. The results show that the Lorentz force applied by the EMF to twist the droplet decreases the accumulated energy in the short-circuited liquid bridge and changes the liquid metal flow condition, both of which reduce the spatter by 7% but increase the welded joint hardness by 10% and tensile strength by 8%. Full article
(This article belongs to the Special Issue Surface Modification Treatments of Metallic Materials)
Show Figures

Figure 1

14 pages, 4952 KiB  
Article
Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets
by Dong Li, Yangyang Hou and Yusong Yu
Energies 2024, 17(17), 4256; https://doi.org/10.3390/en17174256 - 26 Aug 2024
Viewed by 1007
Abstract
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion [...] Read more.
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion characteristics of ADN-based liquid propellant droplets were investigated using experimental methods. A high-speed camera was used to record the droplet combustion process in the combustion chamber, the effect of the microwave antenna on the propellant combustion response was analyzed based on the emission spectroscopy method, and finally, the loss of the microwave antenna was evaluated using a scanning electron microscope. The experimental results show that the droplet has the lowest critical ignition power (179 W) when the material of the microwave antenna is tungsten, but the ignition delay time is higher than that of copper. A finer diameter of microwave antenna is more favorable for plasma generation. At a microwave power of 260 W, the ignition delay time of the droplet with a microwave antenna diameter of 0.3 mm is 100 ms lower than that of 0.8 mm, which is about 37.5%. In addition, this study points out the mechanism of microwave discharge in the droplet combustion process. The metallic microwave antenna not only collects the electrons escaping from the gas discharge, but also generates a large amount of metallic vapor, which provides charged particles to the plasma. This study provides the possibility for the application of microwave-assisted liquid fuel ignition. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

30 pages, 9109 KiB  
Article
Development and Evaluation of a Dry Emulsion of Ostrich Oil as a Dietary Supplement
by Juthaporn Ponphaiboon, Sontaya Limmatvapirat and Chutima Limmatvapirat
Foods 2024, 13(16), 2570; https://doi.org/10.3390/foods13162570 - 17 Aug 2024
Cited by 3 | Viewed by 1813
Abstract
This study aimed to develop a high-quality dry emulsion incorporating omega-3, 6, and 9 fatty acid-rich ostrich oil for use as a dietary supplement. Extracted from abdominal adipose tissues using a low-temperature wet rendering method, the ostrich oil exhibited antioxidant properties, favorable physicochemical [...] Read more.
This study aimed to develop a high-quality dry emulsion incorporating omega-3, 6, and 9 fatty acid-rich ostrich oil for use as a dietary supplement. Extracted from abdominal adipose tissues using a low-temperature wet rendering method, the ostrich oil exhibited antioxidant properties, favorable physicochemical properties, microbial counts, heavy metal levels, and fatty acid compositions, positioning it as a suitable candidate for an oil-in-water emulsion and subsequent formulation as a dry emulsion. Lecithin was employed as the emulsifier due to its safety and health benefits. The resulting emulsion, comprising 10% w/w lecithin and 10% w/w ostrich oil, was stable, with a droplet size of 3.93 ± 0.11 μm. This liquid emulsion underwent transformation into a dry emulsion to preserve the physicochemical stability of ostrich oil, utilizing Avicel® PH-101 or Aerosil® 200 through a granulation process. Although Aerosil® 200 exhibited superior adsorption, Avicel® PH-101 granules surpassed it in releasing the ostrich oil emulsion. Consequently, Avicel® PH-101 was selected as the preferred adsorbent for formulating the ostrich oil dry emulsion. The dry emulsion, encapsulated with a disintegration time of 3.11 ± 0.14 min for ease of swallowing, maintained microbial loads and heavy metal contents within acceptable limits. Presented as granules containing butylated hydroxytoluene, the dry emulsion showcased robust temperature stability, suggesting the potential incorporation of animal fat into dry emulsions as a promising dietary supplement. Full article
Show Figures

Figure 1

10 pages, 7031 KiB  
Article
Applicability of Fluorine Gas Surface Treatment to Control Liquid Sodium Wettability
by Masanari Namie, Jun-ichi Saito, Asuka Ikeda, Ryotaro Oka and Jae-Ho Kim
Surfaces 2024, 7(3), 550-559; https://doi.org/10.3390/surfaces7030037 - 9 Aug 2024
Viewed by 1455
Abstract
The iron (Fe) specimens selected as the substrate metal for this study were surface-treated using fluorine gas, and their wettability with liquid sodium (Na) was evaluated using the sliding angle. Additionally, the surface morphology and binding state were analyzed, and the applicability of [...] Read more.
The iron (Fe) specimens selected as the substrate metal for this study were surface-treated using fluorine gas, and their wettability with liquid sodium (Na) was evaluated using the sliding angle. Additionally, the surface morphology and binding state were analyzed, and the applicability of wettability control with liquid sodium by fluorination was discussed using the analysis results. Fluorination formed a fluoride layer comprising FeF2 and FeF3 bonds on the iron surface. The composition of the fluoride layer varied, depending on the treatment conditions. The surface of the specimen that contains a lot of FeF3 bonds had a small sliding angle for the liquid sodium droplet and was harder to wet than the untreated specimen. In contrast, the surface of the specimen that contains a lot of FeF2 bonds had a large sliding angle for the liquid sodium droplet and was easier to wet than the untreated specimen. These results indicate that fluorination is an effective surface modification technique that can be applied to control the wettability of iron with liquid sodium. Full article
Show Figures

Graphical abstract

34 pages, 7060 KiB  
Review
Responsive Gallium-Based Liquid Metal Droplets: Attributes, Fabrication, Response Behaviors, and Applications
by Qingming Hu, Fengshi Hu, Dandan Sun and Kailiang Zhang
Coatings 2024, 14(8), 935; https://doi.org/10.3390/coatings14080935 - 26 Jul 2024
Cited by 2 | Viewed by 3497
Abstract
Gallium (Ga)-based liquid metals (LMs), as an emerging functional material, stand out among many candidates due to their combination of fluidic and metallic attributes, and they have extensively attracted the attention of academic researchers. When fabricated into droplet form, these metals are imbued [...] Read more.
Gallium (Ga)-based liquid metals (LMs), as an emerging functional material, stand out among many candidates due to their combination of fluidic and metallic attributes, and they have extensively attracted the attention of academic researchers. When fabricated into droplet form, these metals are imbued with many fantastic characteristics, such as a high specific surface area and self-healing properties. Additionally, Ga-based liquid metal droplets (LMDs) achieve higher response accuracy to external stimuli, satisfying the demands of many applications requiring micro-size and precise stimulus-responsivity. Herein, we focus on reviewing the properties of Ga-based LMs and their droplets, the fabrication strategies of metal droplets, their stimulus-response motion under different external fields, and their applications in microfluidic systems, biomedical applications, and micromachines. To further advance the development of responsive Ga-based LMDs, the future outlooks with key challenges related to their further applications are also presented here. Full article
Show Figures

Figure 1

29 pages, 10332 KiB  
Article
Investigation of Liquid–Liquid Reaction Phenomena of Aluminum in Calcium Silicate Slag
by Harald G. R. Philipson, Maria Wallin and Kristian Etienne Einarsrud
Materials 2024, 17(7), 1466; https://doi.org/10.3390/ma17071466 - 22 Mar 2024
Cited by 5 | Viewed by 1339
Abstract
To achieve better process control of silicon (Si) alloy production using aluminum as a reductant of calcium silicate (CaO-SiO2) slag, it is necessary to understand the reaction phenomena concerning the behavior of formed phases at the metal-slag interface during conversion. The [...] Read more.
To achieve better process control of silicon (Si) alloy production using aluminum as a reductant of calcium silicate (CaO-SiO2) slag, it is necessary to understand the reaction phenomena concerning the behavior of formed phases at the metal-slag interface during conversion. The interfacial interaction behavior of non-agitated melt was investigated using the sessile drop method for varying time and temperature, followed by EPMA phase analysis at the vicinity of the metal–slag interface. The most remarkable features of the reaction were the accumulation of solid calcium aluminate product layers at the Al alloy–slag interface and spontaneous emulsion of Si-alloy droplets in the slag phase. The reduction is strictly limited at 1550 °C due to the slow transfer of calcium aluminates away from the metal-slag interface into the partially liquid bulk slag. Reduction was significantly improved at 1600–1650 °C despite an interfacial layer being present, where the conversion rate is most intense in the first minutes of the liquid–liquid contact. A high mass transfer rate across the interface was shown related to the apparent interfacial tension depression of the wetting droplet along with a significant perturbed interface and emulsion due to Kelvin–Helmholtz instability driven by built-up interfacial charge at the interface. The increased reaction rate observed from 1550 °C to 1600–1650 °C for the non-agitated melt was attributed to the advantageous physical properties of the slag phase, which can be further regulated by the stoichiometry of metal–slag interactions and the composition of the slag. Full article
Show Figures

Figure 1

19 pages, 14052 KiB  
Article
Numerical Simulation of Liquid Film Characteristics during Atomization of Aluminum Alloy Powder
by Yingjie Liu, Qiang Hu, Xinming Zhao and Shaoming Zhang
Appl. Sci. 2024, 14(2), 721; https://doi.org/10.3390/app14020721 - 15 Jan 2024
Cited by 1 | Viewed by 1510
Abstract
The process of atomizing aluminum alloy powder using a rotating disk was studied by numerical simulation and experimental verification. The motion characteristics of the molten metal thin liquid film and the evolution law of atomization into droplets were systematically studied with different disk [...] Read more.
The process of atomizing aluminum alloy powder using a rotating disk was studied by numerical simulation and experimental verification. The motion characteristics of the molten metal thin liquid film and the evolution law of atomization into droplets were systematically studied with different disk shapes and speeds. The results showed that the slippage of the liquid film on the surface of the spherical disk was smaller, the liquid film spread more evenly, and the velocity distribution was more uniform. Under the same working condition, the boundary diameter of the continuous liquid film on the spherical disk was 21–29% larger, and the maximum liquid film velocity increased by approximately 19%. In other words, the liquid film obtained more energy at the same rotational speed, the energy utilization rate was higher, and the liquid filaments produced by the splitting region of the disk surface were finer and greater in number. The data showed that the average thickness of the liquid film on the surfaces of different disk shapes was more affected by the speed of the flat disk, and the thickness on the spherical disk was relatively stable and uniform, but the difference in thickness between the two disk shapes decreased from 4.2 μm to 0.3 μm when the speed increased from 10,000 rpm to 60,000 rpm. In particular, the influence of the disk shape on the liquid film thickness became smaller when the speed increased to a certain range. At the same time, the characteristics of the liquid film during the spreading movement of molten metal on the disk and the mechanisms of the primary and secondary breakage of the liquid film were obtained through this simulation study. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

16 pages, 14588 KiB  
Article
Quasi-Static Fracture Toughness and Damage Monitoring in Liquid Metal Reinforced Hybrid Composites
by Zachary Safford, Mohammed Shonar and Vijaya Chalivendra
J. Compos. Sci. 2024, 8(1), 25; https://doi.org/10.3390/jcs8010025 - 11 Jan 2024
Cited by 1 | Viewed by 2057
Abstract
An experimental study is performed to investigate the quasi-static fracture toughness and damage monitoring capabilities of liquid metal (75.5% Gallium/24.5% Indium) reinforced intraply glass/carbon hybrid composites. Two different layups (G-0, where glass fibers are along the crack propagation direction; C-0, where carbon fibers [...] Read more.
An experimental study is performed to investigate the quasi-static fracture toughness and damage monitoring capabilities of liquid metal (75.5% Gallium/24.5% Indium) reinforced intraply glass/carbon hybrid composites. Two different layups (G-0, where glass fibers are along the crack propagation direction; C-0, where carbon fibers are along the crack propagation direction) and two different weight percentages of liquid metal (1% and 2%) are considered in the fabrication of the composites. A novel four-probe technique is employed to determine the piezo-resistive damage response under mode-I fracture loading conditions. The effect of layups and liquid metal concentrations on fracture toughness and changes in piezo-resistance response is discussed. The C-composite without liquid metal demonstrated higher fracture toughness compared to that of the G-composite due to carbon fiber breakage. The addition of liquid metal decreases the fracture initiation toughness of both G- and C-composites. Scanning electron microscopy images show that liquid metal takes the form of large liquid metal pockets and small spherical droplets on the fracture surfaces. In both C- and G-composites, the peak resistance change of composites with 2% liquid metal is substantially lower than that of both no-liquid metal and 1% liquid metal composites. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

Back to TopTop