Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = limbal mesenchymal stromal cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 11166 KB  
Article
Potential Therapeutic Effects of Epithelial and Mesenchymal Stem Cell Secretome in Benzalkonium Chloride-Induced Limbal Stem Cell Dysfunction
by Agnieszka Prusek-Kucharek, Bartosz Sikora and Piotr Czekaj
Cells 2025, 14(22), 1790; https://doi.org/10.3390/cells14221790 - 14 Nov 2025
Viewed by 865
Abstract
Dry Eye Disease (DED) is a multifactorial condition of the ocular surface, with one potential cause being damage from eye drops containing preservatives such as benzalkonium chloride (BAC). Current treatments for DED are unsatisfactory; therefore, it is worth exploring new therapies based on [...] Read more.
Dry Eye Disease (DED) is a multifactorial condition of the ocular surface, with one potential cause being damage from eye drops containing preservatives such as benzalkonium chloride (BAC). Current treatments for DED are unsatisfactory; therefore, it is worth exploring new therapies based on the secretome derived from stem cells. Human stem cells are important sources of growth factors and cytokines that promote tissue regeneration. The secretome of these cells can be obtained in vitro in conditioned medium (CM). The aim of the study was to evaluate the effect of CM derived from adipose-derived stem cells (hADSCs) and amniotic membrane-derived cells expressing mesenchymal and/or epithelial markers on limbal stem cells (LSCs) damaged by BAC, focusing on their regenerative potential. The study used two experimental models: the first focused on neutralizing the toxic effects of BAC when each CM was administered concurrently, and the second on the therapeutic effects of CM after prior cell damage by BAC. The effects of CM on LSCs were assessed, including apoptosis, cell cycle progression, proliferation, migration, and inflammation. CM from ADSCs and amniotic cells were shown to significantly reduce BAC-induced damage to LSCs. All tested CM promoted LSC regeneration, although their efficacy varied among treatments. The application of CM during BAC exposure yielded stronger and more consistent benefits than post-injury treatment. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

52 pages, 3943 KB  
Review
Applications of Modern Cell Therapies: The Latest Data in Ophthalmology
by Ioannis Iliadis, Nadezhda A. Pechnikova, Malamati Poimenidou, Diamantis D. Almaliotis, Ioannis Tsinopoulos, Tamara V. Yaremenko and Alexey V. Yaremenko
Life 2025, 15(10), 1610; https://doi.org/10.3390/life15101610 - 16 Oct 2025
Viewed by 3732
Abstract
Cell-based therapeutics are redefining interventions for vision loss by enabling tissue replacement, regeneration, and neuroprotection. This review surveys contemporary cellular strategies in ophthalmology through the lenses of therapeutic effectiveness, translational readiness, and governance. We profile principal sources—embryonic and induced pluripotent stem cells, mesenchymal [...] Read more.
Cell-based therapeutics are redefining interventions for vision loss by enabling tissue replacement, regeneration, and neuroprotection. This review surveys contemporary cellular strategies in ophthalmology through the lenses of therapeutic effectiveness, translational readiness, and governance. We profile principal sources—embryonic and induced pluripotent stem cells, mesenchymal stromal cells, retinal pigment epithelium, retinal progenitor and limbal stem cells—and enabling platforms including extracellular vesicles, encapsulated cell technology and biomaterial scaffolds. We synthesize clinical evidence across age-related macular degeneration, inherited retinal dystrophies, and corneal injury/limbal stem-cell deficiency, and highlight emerging applications for glaucoma and diabetic retinopathy. Delivery routes (subretinal, intravitreal, anterior segment) and graft formats (single cells, sheets/patches, organoids) are compared using standardized structural and functional endpoints. Persistent barriers include GMP-compliant derivation and release testing; differentiation fidelity, maturation, and potency; genomic stability and tumorigenicity risk; graft survival, synaptic integration, and immune rejection despite ocular immune privilege; the scarcity of validated biomarkers and harmonized outcome measures and ethical, regulatory, and health-economic constraints. Promising trajectories span off-the-shelf allogeneic products, patient-specific iPSC-derived grafts, organoid and 3D-bioprinted tissues, gene-plus-cell combinations, and cell-free extracellular-vesicle therapeutics. Overall, cell-based therapies remain investigational. With adequately powered trials, methodological harmonization, long-term surveillance, scalable xeno-free manufacturing, and equitable access frameworks, they may eventually become standards of care; at present, approvals are limited to specific products/indications and regions, and no cell therapy is the standard of care for retinal disease. Full article
(This article belongs to the Special Issue Advances in Biomedical Frontier Technologies and Disease Diagnosis)
Show Figures

Figure 1

16 pages, 8767 KB  
Article
Senescence and Stress Signaling Pathways in Corneal Cells After Nitrogen Mustard Injury
by Khandaker N. Anwar, Mohammad Soleimani, Mohammad Javad Ashraf, Amirhossein Moghtader, Raghuram Koganti, Seyyedehfatemeh Ghalibafan, Mahbod Baharnoori, Zohreh Arabpour, Kasra Cheraqpour, Aron M. Sebhat, Mansour Abtahi, Xincheng Yao, Mahmood Ghassemi and Ali R. Djalilian
Cells 2024, 13(23), 2021; https://doi.org/10.3390/cells13232021 - 6 Dec 2024
Cited by 5 | Viewed by 1678
Abstract
Mustard gas keratopathy (MGK), a complication of exposure to sulfur mustard, is a blinding ocular surface disease involving key cellular pathways, including apoptosis, oxidative stress, and inflammation. Recent studies indicate that cellular senescence contributes to the pathophysiology of mustard gas toxicity. This study [...] Read more.
Mustard gas keratopathy (MGK), a complication of exposure to sulfur mustard, is a blinding ocular surface disease involving key cellular pathways, including apoptosis, oxidative stress, and inflammation. Recent studies indicate that cellular senescence contributes to the pathophysiology of mustard gas toxicity. This study aimed to assess senescence and stress-related pathways—particularly mitogen-activated protein kinase (MAPK) signaling—in nitrogen mustard (NM)-induced corneal injury. In vitro, primary human corneal epithelial (P-HCECs), primary human corneal mesenchymal stromal cells (hcMSCs), and human corneal–limbal epithelial cell (HCLE) lines were exposed to varying concentrations of NM. The results demonstrated a dose-dependent increase in cellular senescence, characterized by reduced Ki67 expression, elevated p16, and p21 mRNA levels, as well as activation of the MAPK pathway activation. Treatment with a selective p38-MAPK inhibitor significantly reduced senescence markers and improved cell proliferation following exposure to NM. Overall, these studies indicate that NM exposure triggers cellular senescence and stress-related MAPK signaling, while p38-MAPK inhibition mitigates these effects, suggesting a potential therapeutic strategy. Full article
(This article belongs to the Special Issue Mechanism of Cell Signaling during Eye Development and Diseases)
Show Figures

Figure 1

18 pages, 2910 KB  
Article
Anti-Inflammatory and Anti-(Lymph)angiogenic Properties of an ABCB5+ Limbal Mesenchymal Stem Cell Population
by Berbang Meshko, Thomas L. A. Volatier, Johanna Mann, Mark A. Kluth, Christoph Ganss, Markus H. Frank, Natasha Y. Frank, Bruce R. Ksander, Claus Cursiefen and Maria Notara
Int. J. Mol. Sci. 2024, 25(17), 9702; https://doi.org/10.3390/ijms25179702 - 7 Sep 2024
Cited by 2 | Viewed by 2693
Abstract
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched [...] Read more.
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5− cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues. Full article
Show Figures

Figure 1

16 pages, 2562 KB  
Article
Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion
by Sara Aghazadeh, Qiuyue Peng, Fereshteh Dardmeh, Jesper Østergaard Hjortdal, Vladimir Zachar and Hiva Alipour
Int. J. Mol. Sci. 2024, 25(16), 8684; https://doi.org/10.3390/ijms25168684 - 9 Aug 2024
Cited by 2 | Viewed by 1948
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through [...] Read more.
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders. Full article
Show Figures

Figure 1

23 pages, 4682 KB  
Article
Enrichment, Characterization, and Proteomic Profiling of Small Extracellular Vesicles Derived from Human Limbal Mesenchymal Stromal Cells and Melanocytes
by Sebastian Kistenmacher, Melanie Schwämmle, Gottfried Martin, Eva Ulrich, Stefan Tholen, Oliver Schilling, Andreas Gießl, Ursula Schlötzer-Schrehardt, Felicitas Bucher, Günther Schlunck, Irina Nazarenko, Thomas Reinhard and Naresh Polisetti
Cells 2024, 13(7), 623; https://doi.org/10.3390/cells13070623 - 4 Apr 2024
Cited by 7 | Viewed by 3535
Abstract
Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells [...] Read more.
Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche. Full article
Show Figures

Figure 1

22 pages, 8401 KB  
Article
MicroRNA and Protein Cargos of Human Limbal Epithelial Cell-Derived Exosomes and Their Regulatory Roles in Limbal Stromal Cells of Diabetic and Non-Diabetic Corneas
by Nagendra Verma, Drirh Khare, Adam J. Poe, Cynthia Amador, Sean Ghiam, Andrew Fealy, Shaghaiegh Ebrahimi, Odelia Shadrokh, Xue-Ying Song, Chintda Santiskulvong, Mitra Mastali, Sarah Parker, Aleksandr Stotland, Jennifer E. Van Eyk, Alexander V. Ljubimov and Mehrnoosh Saghizadeh
Cells 2023, 12(21), 2524; https://doi.org/10.3390/cells12212524 - 25 Oct 2023
Cited by 18 | Viewed by 3656
Abstract
Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and [...] Read more.
Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs). Presently, we quantify the miRNA and proteome profiles of human LEC-derived Exos and their regulatory roles in N- and DM-LSC. We revealed some miRNA and protein differences in DM vs. N-LEC-derived Exos’ cargos, including proteins involved in Exo biogenesis and packaging that may affect Exo production and ultimately cellular crosstalk and corneal function. Treatment by N-Exos, but not by DM-Exos, enhanced wound healing in cultured N-LSCs and increased proliferation rates in N and DM LSCs vs. corresponding untreated (control) cells. N-Exos-treated LSCs reduced the keratocyte markers ALDH3A1 and lumican and increased the MSC markers CD73, CD90, and CD105 vs. control LSCs. These being opposite to the changes quantified in wounded LSCs. Overall, N-LEC Exos have a more pronounced effect on LSC wound healing, proliferation, and stem cell marker expression than DM-LEC Exos. This suggests that regulatory miRNA and protein cargo differences in DM- vs. N-LEC-derived Exos could contribute to the disease state. Full article
(This article belongs to the Special Issue Extracellular Vesicles: Potential Roles in Regenerative Medicine)
Show Figures

Graphical abstract

10 pages, 12376 KB  
Communication
PAX6 Expression Patterns in the Adult Human Limbal Stem Cell Niche
by Naresh Polisetti, Günther Schlunck and Thomas Reinhard
Cells 2023, 12(3), 400; https://doi.org/10.3390/cells12030400 - 23 Jan 2023
Cited by 13 | Viewed by 3886
Abstract
Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely [...] Read more.
Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely clear. To distinctly assess the PAX6 expression in limbal niche cells, fresh and organ-cultured human corneoscleral tissues were stained immunohistochemically. Furthermore, the expression of PAX6 in cultured limbal cells was investigated. Immunostaining revealed the presence of PAX6-negative cells which were positive for vimentin and the melanocyte markers Melan-A and human melanoma black-45 in the basal layer of the limbal epithelium. PAX6 staining was not observed in the limbal stroma. Moreover, the expression of PAX6 was observed by Western blot in cultured LEPC but not in cultured LMSC or LM. These data indicate a restriction of PAX6 expression to limbal epithelial cells at the limbal stem cell niche. These observations warrant further studies for the presence of other PAX isoforms in the limbal stem cell niche. Full article
(This article belongs to the Special Issue Stem Cells in Tissue Homeostasis, Regeneration and Disease)
Show Figures

Figure 1

17 pages, 28469 KB  
Article
P-Cadherin Is Expressed by Epithelial Progenitor Cells and Melanocytes in the Human Corneal Limbus
by Naresh Polisetti, Lyne Sharaf, Gottfried Martin, Günther Schlunck and Thomas Reinhard
Cells 2022, 11(12), 1975; https://doi.org/10.3390/cells11121975 - 20 Jun 2022
Cited by 10 | Viewed by 3753
Abstract
Interactions between limbal epithelial progenitor cells (LEPC) and surrounding niche cells, which include limbal mesenchymal stromal cells (LMSC) and melanocytes (LM), are essential for the maintenance of the limbal stem cell niche required for a transparent corneal surface. P-cadherin (P-cad) is a critical [...] Read more.
Interactions between limbal epithelial progenitor cells (LEPC) and surrounding niche cells, which include limbal mesenchymal stromal cells (LMSC) and melanocytes (LM), are essential for the maintenance of the limbal stem cell niche required for a transparent corneal surface. P-cadherin (P-cad) is a critical stem cell niche adhesion molecule at various epithelial stem cell niches; however, conflicting observations were reported on the presence of P-cad in the limbal region. To explore this issue, we assessed the location and phenotype of P-cad+ cells by confocal microscopy of human corneoscleral tissue. In subsequent fluorescence-activated cell sorting (FACS) experiments, we used antibodies against P-cad along with CD90 and CD117 for the enrichment of LEPC, LMSC and LM, respectively. The sorted cells were characterized by immunophenotyping and the repopulation of decellularized limbal scaffolds was evaluated. Our findings demonstrate that P-cad is expressed by epithelial progenitor cells as well as melanocytes in the human limbal epithelial stem cell niche. The modified flow sorting addressing P-cad as well as CD90 and CD117 yielded enriched LEPC (CD90CD117P-cad+) and pure populations of LMSC (CD90+CD117P-cad) and LM (CD90CD117+P-cad+). The enriched LEPC showed the expression of epithelial progenitor markers and better colony-forming ability than their P-cad counterparts. The cultured LEPC and LM exhibited P-cad expression at intercellular junctions and successfully repopulated decellularized limbal scaffolds. These data suggest that P-cad is a critical cell–cell adhesion molecule, connecting LEPC and LM, which may play an important role in the long-term maintenance of LEPC at the limbal stem cell niche; moreover, these findings led to further improvement of cell enrichment protocols to enhance the yield of LEPC. Full article
Show Figures

Figure 1

19 pages, 25620 KB  
Article
Efficient Isolation and Functional Characterization of Niche Cells from Human Corneal Limbus
by Naresh Polisetti, Lyne Sharaf, Ursula Schlötzer-Schrehardt, Günther Schlunck and Thomas Reinhard
Int. J. Mol. Sci. 2022, 23(5), 2750; https://doi.org/10.3390/ijms23052750 - 2 Mar 2022
Cited by 21 | Viewed by 4195
Abstract
The fate decision of limbal epithelial progenitor cells (LEPC) at the human corneal limbus is determined by the surrounding microenvironment with limbal niche cells (LNC) as one of its essential components. Research on freshly isolated LNC which mainly include limbal mesenchymal stromal cells [...] Read more.
The fate decision of limbal epithelial progenitor cells (LEPC) at the human corneal limbus is determined by the surrounding microenvironment with limbal niche cells (LNC) as one of its essential components. Research on freshly isolated LNC which mainly include limbal mesenchymal stromal cells (LMSC) and limbal melanocytes (LM) has been hampered by a lack of efficient protocols to isolate and purify these cells. We devised a protocol for rapid retrieval of pure LMSC, LM and LEPC populations by collagenase digestion of limbal tissue and subsequent fluorescence-activated cell sorting (FACS) using antibodies against CD90 and CD117. The sorted cells were characterized by immunophenotyping and functional assays. The effects of LMSC and LM on LEPC were studied in 3D co-cultures and LEPC differentiation status was assessed by immunohistochemistry. Enzymatic digestion and flow sorting yielded pure populations of LMSC (CD117CD90+), LM (CD117+CD90), and LEPC (CD117CD90). The LMSC exhibited self-renewal capacity (55.0 ± 4.6 population doublings), expressed mesenchymal stem cell markers (CD73, CD90, CD105, and CD44), and transdifferentiated to adipocytes, osteocytes, or chondrocytes. The LM exhibited self-renewal capacity and sustained melanin production. The sorted LEPC expressed epithelial progenitor markers (CK14, CK19, and CK15) and showed a colony-forming ability. Co-cultivation of LMSC and LM with LEPC resulted in a 4–5-layered stratified epithelium and supported the preservation of a LEPC phenotype, as reflected by increased p63+ and Ki67+ cells and decreased CK12+ cells compared with LEPC monocultures. A highly efficient isolation of pure LM, LMSC, and LEPC populations from a single preparation may allow for direct transcriptomic and proteomic profiling as well as functional studies on native unpassaged LNC, which can be considered as proper equivalents of LNC in vivo. The developed biomimetic 3D co-culture method could provide an experimental model for investigating the functional role of LNC in the limbal stem cell niche. Full article
(This article belongs to the Special Issue Technical Pitfalls and Biases in Molecular Biology)
Show Figures

Figure 1

17 pages, 5270 KB  
Article
Conditional Deletion of AP-2β in the Periocular Mesenchyme of Mice Alters Corneal Epithelial Cell Fate and Stratification
by Haydn Walker, Aftab Taiyab, Paula Deschamps, Trevor Williams and Judith A. West-Mays
Int. J. Mol. Sci. 2021, 22(16), 8730; https://doi.org/10.3390/ijms22168730 - 13 Aug 2021
Cited by 6 | Viewed by 3552
Abstract
The cornea is an anterior eye structure specialized for vision. The corneal endothelium and stroma are derived from the periocular mesenchyme (POM), which originates from neural crest cells (NCCs), while the stratified corneal epithelium develops from the surface ectoderm. Activating protein-2β (AP-2β) is [...] Read more.
The cornea is an anterior eye structure specialized for vision. The corneal endothelium and stroma are derived from the periocular mesenchyme (POM), which originates from neural crest cells (NCCs), while the stratified corneal epithelium develops from the surface ectoderm. Activating protein-2β (AP-2β) is highly expressed in the POM and important for anterior segment development. Using a mouse model in which AP-2β is conditionally deleted in the NCCs (AP-2β NCC KO), we investigated resulting corneal epithelial abnormalities. Through PAS and IHC staining, we observed structural and phenotypic changes to the epithelium associated with AP-2β deletion. In addition to failure of the mutant epithelium to stratify, we also observed that Keratin-12, a marker of the differentiated epithelium, was absent, and Keratin-15, a limbal and conjunctival marker, was expanded across the central epithelium. Transcription factors PAX6 and P63 were not observed to be differentially expressed between WT and mutant. However, growth factor BMP4 was suppressed in the mutant epithelium. Given the non-NCC origin of the epithelium, we hypothesize that the abnormalities in the AP-2β NCC KO mouse result from changes to regulatory signaling from the POM-derived stroma. Our findings suggest that stromal pathways such as Wnt/β-Catenin signaling may regulate BMP4 expression, which influences cell fate and stratification. Full article
(This article belongs to the Special Issue Neural Crest Development in Health and Disease)
Show Figures

Figure 1

Back to TopTop