Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = lens-less light collection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1873 KiB  
Article
Enhanced Fluorescence in a Lens-Less Fiber-Optic Sensor for C-Reactive Protein Detection
by Victoria Esteso, Pietro Lombardi, Francesco Chiavaioli, Prosenjit Majumder, Maja Colautti, Steffen Howitz, Paolo Cecchi, Francesco Baldini, Ambra Giannetti and Costanza Toninelli
Chemosensors 2023, 11(8), 448; https://doi.org/10.3390/chemosensors11080448 - 11 Aug 2023
Cited by 2 | Viewed by 2112
Abstract
In today’s medicine, the celerity of the bio-assays analysis is crucial for the timely selection of the appropriate therapy and hence its effectiveness, especially in case of diseases characterized by the late onset of symptoms. In this paper, a lens-less fiber optics-based fluorescence [...] Read more.
In today’s medicine, the celerity of the bio-assays analysis is crucial for the timely selection of the appropriate therapy and hence its effectiveness, especially in case of diseases characterized by the late onset of symptoms. In this paper, a lens-less fiber optics-based fluorescence sensor designed for the measurement of labeled bio-assays is presented and its potential for the early diagnosis of sepsis via C-reactive protein (CRP) detection is demonstrated. The sensor performance results from the combination of two key elements: a planar antenna that redirects fluorescence the marker emission and an automated fiber-based optical system for multi-spot analysis. First, the working principle of the device is demonstrated with a well-established antibody–antigen format (immunoglobulin IgG/anti-IgG assay), reporting more than one order of magnitude enhanced limit of detection (LOD) and limit of quantification (LOQ) for the planar antenna with respect to a standard glass substrate. The prototype is then tested against a sample mimicking a realistic case, prepared with commercially available human serum, showing a LOD and LOQ in the clinical range of interest (0.0015 μg/mL and 0.005 μg/mL, respectively) for the investigation of the sepsis biomarker CRP. These results validate the developed prototype as a simple and easy-to-operate device, compatible with standardized micro-well arrays, and potentially suitable for POC applications. Full article
Show Figures

Figure 1

20 pages, 10165 KiB  
Article
Polarization Snapshot Imaging Spectrometer for Infrared Range
by Hongcheng Tao, Jinguang Lv, Jingqiu Liang, Baixuan Zhao, Yupeng Chen, Kaifeng Zheng, Yingze Zhao, Weibiao Wang, Yuxin Qin, Guohao Liu and Kaiyang Sheng
Photonics 2023, 10(5), 566; https://doi.org/10.3390/photonics10050566 - 11 May 2023
Cited by 4 | Viewed by 2086
Abstract
Infrared imaging spectrometers detect and identify targets by collecting spectral and image information. However, when detecting small temperature differences and dynamic targets, the accuracy of infrared detection is reduced, the traditional scanning structure detection time is longer, the real-time performance is poor and [...] Read more.
Infrared imaging spectrometers detect and identify targets by collecting spectral and image information. However, when detecting small temperature differences and dynamic targets, the accuracy of infrared detection is reduced, the traditional scanning structure detection time is longer, the real-time performance is poor and it is easy to introduce motion artifacts. This paper proposes an infrared polarization snapshot spectral imaging system (PSIFTIS) based on a polarizer array, a lens array and a roof-shaped stepped micromirror. Polarized light can solve the problem of small-temperature-difference target recognition by characterizing the surface properties of materials. Lens arrays utilize multi-aperture imaging to achieve snapshot detection of targets. The system can obtain 4D data information, including polarization, in a single measurement cycle. This study completed the overall optical design of a PSIFTIS and an optical simulation experiment using it. Finally, a system prototype was built in the laboratory and a polarization spectrum detection experiment was carried out. The experimental results show that the PSIFTIS could accurately obtain the polarization spectrum information for the target, the spectral resolution reached 7.8 cm−1 and the Stokes measurement error was less than 5%. Full article
Show Figures

Figure 1

16 pages, 11961 KiB  
Article
A Novel Technique for Full-Field Deformation and Temperature Measurement by Ultraviolet Imaging: Experimental Design and Preliminary Results
by Jingqing Zhang, Yong Shang, Xuehang Li, Yali Dong and Yanling Pei
Coatings 2021, 11(6), 641; https://doi.org/10.3390/coatings11060641 - 27 May 2021
Cited by 9 | Viewed by 3466
Abstract
Synchronous measurement of full-field temperature and deformation at high temperature especially more than 1273 K is of much significance especially for part applications of turbine structures and materials. Non-contact optical methods attract more and more attention, however, current methods all face different challenges, [...] Read more.
Synchronous measurement of full-field temperature and deformation at high temperature especially more than 1273 K is of much significance especially for part applications of turbine structures and materials. Non-contact optical methods attract more and more attention, however, current methods all face different challenges, such as strong light reflection on the surface of the specimen, disturbing radiation from environment, complex equipment setup, limited measured temperature not higher than 900 °C and so on. In this work, we develop an innovative technique to overcome some current problems. The measurement system employing an ultraviolet (UV) imaging system is composed of a scientific complementary metal oxide semiconductor (sCMOS) camera, a lens and a UV bandpass filter. The UV bandpass filter was used for thermal radiation elimination to acquire high quality images at elevated temperatures for deformation field calculation suitable for digital image correlation (DIC) method. The UV sensitive sCMOS camera without using active illumination was employed to collect enough UV radiation energy and eliminate the interference of the external ambient light, which is applicable for high accuracy temperature field measurement. Our system can realize the synchronous capture of image and temperature acquisition with passive UV imaging system at temperature not lower than 1473 K. The feasibility of the method was verified through heating molybdenum (Mo) and Ni-based superalloy IC21 materials. The temperature fields of Mo measured by the established imaging system up to 1835 K with error less than 0.25% showed the effectiveness for temperature measurement. The estimated deformation and temperature field of Ni-based superalloy IC21 up to 1473 K with measured temperature error less than 0.5% demonstrated well the great potential of the UV imaging system in simultaneous measurement of temperature and deformation fields at elevated temperatures. Full article
Show Figures

Figure 1

17 pages, 2035 KiB  
Article
Compact Miniaturized Bioluminescence Sensor Based on Continuous Air-Segmented Flow for Real-Time Monitoring: Application to Bile Salt Hydrolase (BSH) Activity and ATP Detection in Biological Fluids
by Aldo Roda, Pierpaolo Greco, Patrizia Simoni, Valentina Marassi, Giada Moroni, Antimo Gioiello and Barbara Roda
Chemosensors 2021, 9(6), 122; https://doi.org/10.3390/chemosensors9060122 - 25 May 2021
Cited by 4 | Viewed by 3530
Abstract
A simple and versatile continuous air-segmented flow sensor using immobilized luciferase was designed as a general miniaturized platform based on sensitive biochemiluminescence detection. The device uses miniaturized microperistaltic pumps to deliver flows and compact sensitive light imaging detectors based on BI-CMOS (smartphone camera) [...] Read more.
A simple and versatile continuous air-segmented flow sensor using immobilized luciferase was designed as a general miniaturized platform based on sensitive biochemiluminescence detection. The device uses miniaturized microperistaltic pumps to deliver flows and compact sensitive light imaging detectors based on BI-CMOS (smartphone camera) or CCD technology. The low-cost components and power supply make it suitable as out-lab device at point of need to monitor kinetic-related processes or ex vivo dynamic events. A nylon6 flat spiral carrying immobilized luciferase was placed in front of the detector in lensless mode using a fiber optic tapered faceplate. ATP was measured in samples collected by microdialysis from rat brain with detecting levels as low as 0.4 fmoles. The same immobilized luciferase was also used for the evaluation of bile salt hydrolase (BSH) activity in intestinal microbiota. An aminoluciferin was conjugatated with chenodeoxycholic acid forming the amide derivative aLuc-CDCA. The hydrolysis of the aLuc-CDCA probe by BSH releases free uncaged aminoluciferin which is the active substrate for luciferase leading to light emission. This method can detect as low as 0.5 mM of aLuc-CDCA, so it can be used on real faecal human samples to study BSH activity and its modulation by diseases and drugs. Full article
(This article belongs to the Special Issue Microfluidic Biosensing Platform)
Show Figures

Figure 1

14 pages, 3624 KiB  
Article
A Side-Absorption Concentrated Module with a Diffractive Optical Element as a Spectral-Beam-Splitter for a Hybrid-Collecting Solar System
by An-Chi Wei, Wei-Jie Chang and Jyh-Rou Sze
Energies 2020, 13(1), 192; https://doi.org/10.3390/en13010192 - 1 Jan 2020
Cited by 5 | Viewed by 3278
Abstract
In this paper, we propose a side-absorption concentrated module with diffractive grating as a spectral-beam-splitter to divide sunlight into visible and infrared parts. The separate solar energy can be applied to different energy conversion devices or diverse applications, such as hybrid PV/T solar [...] Read more.
In this paper, we propose a side-absorption concentrated module with diffractive grating as a spectral-beam-splitter to divide sunlight into visible and infrared parts. The separate solar energy can be applied to different energy conversion devices or diverse applications, such as hybrid PV/T solar systems and other hybrid-collecting solar systems. Via the optimization of the geometric parameters of the diffractive grating, such as the grating period and height, the visible and the infrared bands can dominate the first and the zeroth diffraction orders, respectively. The designed grating integrated with the lens and the light-guide forms the proposed module, which is able to export visible and infrared light individually. This module is demonstrated in the form of an array consisting of seven units, successfully out-coupling the spectral-split beams by separate planar ports. Considering the whole solar spectrum, the simulated and measured module efficiencies of this module were 45.2% and 34.8%, respectively. Analyses of the efficiency loss indicated that the improvement of the module efficiency lies in the high fill-factor lens array, the high-reflectance coating, and less scattering. Full article
Show Figures

Graphical abstract

Back to TopTop