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Abstract: In this paper, we propose a side-absorption concentrated module with diffractive grating
as a spectral-beam-splitter to divide sunlight into visible and infrared parts. The separate solar
energy can be applied to different energy conversion devices or diverse applications, such as hybrid
PV/T solar systems and other hybrid-collecting solar systems. Via the optimization of the geometric
parameters of the diffractive grating, such as the grating period and height, the visible and the infrared
bands can dominate the first and the zeroth diffraction orders, respectively. The designed grating
integrated with the lens and the light-guide forms the proposed module, which is able to export visible
and infrared light individually. This module is demonstrated in the form of an array consisting of
seven units, successfully out-coupling the spectral-split beams by separate planar ports. Considering
the whole solar spectrum, the simulated and measured module efficiencies of this module were 45.2%
and 34.8%, respectively. Analyses of the efficiency loss indicated that the improvement of the module
efficiency lies in the high fill-factor lens array, the high-reflectance coating, and less scattering.
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1. Introduction

Solar technologies have drawn significant attention due to the Earth’s extreme climate and energy
crises, and these technologies have recently made great progress. Mostly, those solar technologies
transform sunlight into electricity or thermal power. Although one of the dominating technologies
for generating electricity from sunlight is photovoltaics, this technology entails significant energy
loss, including thermal loss and spectral loss. To enhance or extend the energy usage of photovoltaic
systems (PV), researchers have collected waste thermal energy, such as cascading photovoltaic and
thermal modules [1], integrated a PV-powered air-conditioning unit with a boiler [2], reduced the
PV temperature for higher efficiency by using air-based hybrid photovoltaic/thermal systems (PV/T),
water-based PV/T, and refrigerant-based PV/T [3–5], and even extended the operating bands by means
of multi-junction photovoltaics, spectral-beam-splitters (SBS), and so on [6–9]. Among the systems
belonging to the PV/T regime, SBS has the following advantages. Photovoltaic cells are no longer
used as thermal receivers, so over-heating can be avoided. Moreover, their relatively low operation
temperatures have led to high efficiency. The temperature of the heat transfer fluid (HTF) of thermal
modules can be unrestricted by the operating temperature of the cells, resulting in a broad range of
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thermal applications [8]. Because of the characteristic of spectral splitting, SBS can be applied not
only to the PV/T but also other hybrid-collecting solar systems, such as a dual-photovoltaic system
with its cells operating in different energy-conversion bands [10,11]. In terms of configurations, the
technique of SBS includes the following categories: dichroic filtering, liquid absorption, diffraction,
and others [8,12]. Diffractive type of SBS can be sorted mainly by the alignment method of the
sunlight receivers. The first type of alignment adopts a common optical axis for different receivers,
such as photovoltaic cells and thermal tubes [13–15]. Thus, the shadow effect becomes unavoidable.
The second kind of alignment arranges multiple receivers with different optical axes [16–19]. In this
arrangement, the sunlight receivers can be photovoltaic cells with different absorption bands and
lateral arrangements [12,13]. The third kind is proposed as a planar concentrator with a zig-zag optical
axis, with the receivers located at different sides of the concentrator [20,21]. Herein, we propose a novel
SBS configuration (of the third kind of alignment), consisting of a zig-zag optical axis, with integration
of the diffractive optical element (DOE) and other planar optics to form a side-absorption concentrated
module. In addition to the design principle of the module constructed by a single unit, we present and
discuss a practical demonstration of seven units. Notably, because of its side-absorption structure, the
system’s thickness, complexities in component alignment, and wire connections can be reduced [22–24].
In brief, the proposed side-absorption concentrated module inherits the benefits of SBS, such as the
improved operating efficiency of photovoltaics, more probable thermal-applications, etc., while its
novel configuration facilitates a compact PV/T system with a simplified packaging process because of
its side-absorption structure.

2. Principles

2.1. Side-Absorption Concentrated Module for Spectral-Beam Splitting

The proposed side-absorption concentrated module utilizes lenses, DOEs, and a light-guide as
the condenser, the spectral beam-splitter and the out-coupling adapter, respectively. The structure
of the proposed module is illustrated in Figure 1. Assume that the whole module is allocated on
a solar tracker and that sunlight is regarded as normally incident to the module. When sunlight
illuminates the positive lens, the light will be condensed and will pass through a DOE (considered
a diffractive grating, herein). Then, the grating will diffract the light according to its wavelength.
In this study, a structured light-guide with its top surface as the entrance and two side surfaces as two
output ports will receive the diffracted waves, while the two ports export the sunlight in the visible
and infrared bands individually. By means of this light-guide, the diffracted waves will be directed
toward different output ports according to their spectra, resulting in the module splitting sunlight
spectrally. Meanwhile, the proposed module inherits the advantages of the planar concentrator such
that the output ports lie in the same horizontal plane, thereby allowing for planar outputs and saving
the system volume. Afterwards, this module can be applied to a hybrid solar system with different
energy-conversion mechanisms. As for the issues and challenges of the proposed module, they are
discussed in Section 5.3 along with the comparisons to other techniques.
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2.2. Performance Evaluation

The evaluation of the proposed side-absorption concentrated module consists of two stages.
The primary stage evaluates the diffraction performance when the light passes through the grating,
and the secondary stage evaluates the out-coupling performance when the light propagates through
all components and couples out from the different output ports of the light-guide. Compared to the
lens, the grating is more dominant during the first stage because its dispersion affects the performance
of beam-splitting, and its high-order diffraction results in a loss. Accordingly, the lens is regarded as
ideal to simplify the grating analyses in the primary stage. In this study, we evaluate grating by its
diffractive efficiency in the visible band, the infrared band, and the whole solar spectrum. Meanwhile,
the grating is designated to diffract the visible portion of sunlight toward the first-order diffraction and
the infrared portion toward the zeroth-order diffraction. The efficiency of the grating in the visible
band, ηvis

grating, can be then considered as the ratio of the optical power of the first-order visible output
to that of the visible sunlight:

ηvis
grating =

∫ λvis
e

λvis
s
η1

di f f ,grating(λ) · S(λ)dλ∫ λvis
e

λvis
s

S(λ)dλ
, (1)

where η1
di f f ,grating(λ) denotes the first-order diffraction efficiency of the grating under a source with

wavelength λ, and S represents the solar spectrum. λs
vis and λe

vis are the starting and ending
wavelengths of the considered visible spectrum, respectively. Similarly, the grating efficiency in the
infrared band, ηIR

grating, relates to the optical power of the zeroth-order infrared output:

ηIR
grating =

∫ λIR
e

λIR
s
η0

di f f ,grating(λ) · S(λ)dλ∫ λIR
e

λIR
s

S(λ)dλ
, (2)

where η0
di f f ,grating(λ) denotes the zeroth-order diffraction efficiency of the grating, and λs

IR and λe
IR

are the start and the end wavelengths of the considered infrared spectrum, respectively. Likewise, all
out-coupling waves from the designated diffraction orders are counted to derive the grating efficiency
within the whole solar spectrum:

ηtotal
grating =

∫ λvis
e

λvis
s
η1

di f f ,grating(λ) · S(λ)dλ+
∫ λIR

e
λIR

s
η0

di f f ,grating(λ) · S(λ)dλ∫ λtotal
e

λtotal
s

S(λ)dλ
, (3)

where λs
total and λe

total are the start and the end wavelengths of the considered solar
spectrum, respectively.

At the second stage, the synergetic effects of all components, including the lens, the grating, and
the light-guide, are taken into account. The module efficiency for the visible band relates to the optical
power of visible light out-coupled from the visible port of the light-guide:

ηvis
module =

∫ λvis
e

λvis
s
ηlens(λ) · η

1
di f f ,grating(λ) · ηlightguide(λ) · S(λ)dλ∫ λvis

e

λvis
s

S(λ)dλ
, (4)
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where ηlens(λ) and ηlightguide (λ) are the wavelength-dependent transmittance of the lens and the guiding
efficiency of the light-guide, respectively. Similarly, the module efficiency for the infrared band and the
whole solar spectrum can be respectively expressed as follows:

ηIR
module =

∫ λIR
e

λIR
s
ηlens(λ) · η

0
di f f ,grating(λ) · ηlightguide(λ) · S(λ)dλ∫ λIR

e
λIR

s
S(λ)dλ

(5)

and

ηtotal
module =

∫ λvis
e

λvis
s

ηlens(λ)·η
1
di f f ,grating(λ)·ηlightguide(λ)·S(λ)dλ+

∫ λIR
e

λIR
s
ηlens(λ)·η

0
di f f ,grating(λ)·ηlightguide(λ)·S(λ)dλ∫ λtotal

e
λtotal

s
S(λ)dλ

. (6)

According to Equations (1)–(6), the spectral-splitting performance of the grating and that of the
entire side-absorption concentrated module can be calculated and evaluated. In the following sections,
these equations will be utilized for the design and optimization of the optical components in the
proposed module, as well as for evaluation of the whole module.

3. Modeling

In order to facilitate the demonstration of a single unit and an assembled array of the proposed
module, we considered the commercial specifications of lenses and then designated a lens as the
condenser with a diameter of 25.4 mm and a distance of 30 mm between the lens and the grating. Since
a lens with a long focal length produces a thick module, and that with a short focal length brings about
large spherical aberrations, a lens with an appropriate focal length was plotted, and a commercial
lens (model: AC254-080-A) with a focal length of 80 mm was selected. Notably, the selected lens uses
achromatic coating to reduce chromatic aberration, which can simplify the optical properties of the
waves incident to the grating and facilitate the grating design.

3.1. Optimization of Diffractive Grating

There are several considerations for designing the diffractive grating in the proposed module,
including the grating period, the geometric shape, the material, and the diffraction orders in use.
Because of the available fabrication processes and the requirement to achieve duplication with sufficient
efficiency, the shape and material of the grating were designed as blazed and polyethylene terephthalate
(PET), respectively. Meanwhile, the zeroth and the first diffraction orders were utilized. According
to the grating equation, the diffractive beams can be characterized by their diffractive angles. For a
normally incident light source, the diffractive angle of the mth-order diffraction can be expressed as
in [25]:

θm = sin−1
(mλ

d

)
, (7)

where d is the grating period. By differentiation, the angular dispersion of the grating is derived as
in [26]:

∂θm

∂λ
=

m
d× cosθm

. (8)

Equation (8) indicates that diffraction order m and grating period d are the determinative factors
of angular dispersion. In the proposed module, the diffractive angle of every spectral wave influenced
the overlapping of the diffractive spots on the following light-guide. Therefore, the effects of the
grating period were analyzed based on Equation (7) for every wavelength. By means of the optical
tool, LightTools, the diffractive spots from a broad-band source were simulated. The results show that
when the grating period was less than 16 µm, the overlapping of the diffractive spots was eliminated.
With consideration of the fabrication accuracy, the grating period was optimized as 15 µm.
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Next, since the designated shape of the grating was blazed, the blaze angle was determined
in terms of its diffraction efficiency, which is the merit-function to determine the blaze angle when
the grating period is given [27]. Further, because of the wide spectral range of the light source,
the diffraction efficiency was unable to be calculated accurately via scalar diffraction theory. Thus,
the simulation was executed by means of the rigorous-coupled-wave-analysis (RCWA) software,
Gsolver, to derive the diffraction efficiency of the blazed grate with different blaze angles. According
to Equations (1)–(3), the grating efficiencies for the considered visible band (380–780 nm), infrared
band (780~2520 nm), and whole solar band (280~2520 nm) were calculated, as shown in Figure 2.
To maximize the grating efficiency within the whole solar spectrum, the optimized blaze angle was
3.51◦, which is equivalent to a grating height of 0.92 µm. Then, the maximum grating efficiency for the
whole solar spectrum reached 63.3%, while the corresponding efficiencies for the visible and infrared
spectra were 73.8% and 54.4%, respectively. Additionally, the spectral-splitting performance illustrated
in Figure 3 reveals that the unused diffraction orders were greatly suppressed.
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3.2. Design of the Module

After the lens and the grating had been designed, the following step was to determine the
parameters of the light-guide. Herein, a single-unit module was considered for the design. An isosceles
v-groove was assumed to exist on the bottom side of the light-guide with reflective coating to direct
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the spectral-split beams toward different output ports. The ray-tracing diagram for a collimated light
source impinging on the proposed module is illustrated in Figure 4. This diagram shows that, for
the first-order diffraction, the spot on the light-guide shifts along the +y axis when the wavelength
increases, but this y-shift phenomenon does not occur for the zeroth-order light. Accordingly, adjusting
the length, vertex angle, and center of the reflective v-groove, one can direct the first-order diffractive
light, mainly in the visible spectrum, toward the visible output port and allow the on-axis zeroth-order
diffractive light (mainly infrared) to be reflected toward the infrared output port. In order to maintain
efficient propagation, the v-groove must make the light propagating within the light-guide to fulfill the
condition of total internal reflection (TIR). Then, the v-groove was assigned as an isosceles triangle
with a vertex angle of 120◦ to facilitate fabrication. On the other hand, when the proposed module was
constructed as an array to enlarge the solar insolation, the greater number of units resulted in longer
optical paths for the rays reflected by the v-groove and a higher possibility for them to encounter other
v-grooves. Subsequently, the propagation inclination of these rays changed, and the probability of rays
exiting the light-guide through the entrance surface increased. In this way, more loss was induced,
and the module efficiency was reduced. Thus, the geometries of the v-groove and light-guide were
optimized by maximizing the module efficiency of the whole solar spectrum, as defined in Equation
(6). The material of the light-guide was assigned as polymethylmethacrylate (PMMA). The simulation
was performed using the software LightTools with consideration of the antireflective coating on the
lens, the Fresnel loss at every interface, and the half-angle subtended by the sun, while other factors,
such as the reflectance of the v-groove, were regarded as ideal. Moreover, the sizes of the grating and
the light-guide in the simulation were designed according to the dimensions of the lenses, as well as
the required borders and output area compatible with the receiver.Energies 2020, 13, x FOR PEER REVIEW 7 of 14 
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the zeroth-order diffractive beams exiting through the visible and the infrared output ports, respectively.

Based on Equation (6), the module efficiency was counted from the simulated output power.
Based on the results shown in Figure 5a, although the reflectance of the v-groove was assigned as
unity, a longer v-groove length (as illustrated in Figure 5b) did not always contribute to higher module
efficiency. The reason for this result is that an increased v-groove length enlarges the probability of
rays encountering the second or successive grooves, resulting in more possible rays being reflected out
of the light-guide through the entrance surface and leading to greater possible loss. Based on these
simulated results, the geometric parameters of the v-groove were determined after the number of
units for a module was given. The designed parameters of the v-groove and the light-guide will be
presented in the next section along with those of the other components.
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4. Demonstration and Experiment

The proposed module was demonstrated in the form of an array comprising seven units. Each
unit consisted of three components, including a commercial achromatic lens (AC254-080-A), a blaze
grating made of PET, and a PMMA light-guide with a carved v-groove. Based on the aforementioned
design considerations, the parameters of the components were determined under the condition of a
seven-unit module, as listed in Table 1. It is worth noting that the gratings of all units can be integrated
into one device to simplify fabrication, and the light-guide has similar properties. Thus, the models
of these two components were constructed as monolithic. Using Equations (4)–(6), the simulated
module efficiency of the seven-unit module for the whole solar spectrum was 45.2%, and the efficiency
for the visible and the infrared output ports was 53.8% and 37.5%, respectively. The grating sheet
was fabricated via a roll-to-roll process. Meanwhile, the structured light-guide was fabricated by
ultra-precision diamond machining, and then the carved v-grooves were coated with a reflective
aluminum film. Moreover, in order to assemble all the components of the module, a fixture was
designed and fabricated. The assembled module is shown in Figure 6.

After the assembly of all components with the fixture, the whole module was mounted on a
dual-axis solar tracker for measurement. A customized integrating sphere, a power meter (NOVA II,
Ophir Optronics), a visible spectrometer (SE1020C-025-VNIR, OtO Photonics Inc.), and an infrared
spectrometer (SW2830S-050-NIRA, OtO Photonics Inc.) were utilized to measure the solar irradiance
along with the out-coupling power and spectra from both the output ports. According the specifications
of these instruments, the guaranteed power accuracy and the spectral accuracies of the visible and
infrared bands were±3%, less than 0.4 nm, and less than 1 nm, respectively. A photo of the experimental
setup is shown in Figure 7.

Table 1. Designed parameters of the components for each unit in the 7-unit module.

Lens
Diameter Focal Length Material *
25.4 mm 80 mm N-BK7, N-SF5

Grating Period Blaze Angle Material
15 µm 3.51◦ PET

Light-guide Dimensions (Width × Length × Thickness) Material
25.4 mm × 25.4 mm × 10.8 mm PMMA

V-groove Vertex Angle Vertex Location Length Width Coating
120◦ Off-axis 0.82 mm 5 mm 5 mm Al

* A commercial sample treated with achromatic coating was utilized.
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The experiment was performed on a clear sunny day with the whole module fixed on the solar
tracker. The irradiance of sunlight was measured as 606 W/m2, and the incident solar power was
counted as 2149.5 mW. The measured power in the visible spectrum from the visible output port was
523.7 mW, and that in the infrared spectrum from the infrared output port was 225.28 mW. Based on
Equations (4)–(5), the module efficiencies were 44.8% and 24.6% for the visible and the infrared spectra,
respectively. The experimental module efficiency for the whole solar spectrum was then counted as
34.8%, according to Equation (6).

When the proposed side-absorption concentrated module is connected to different receivers that
are energy conversion devices, the system efficiency will vary. Ideally, the visible and the infrared
output ports will be linked to the devices with complete energy conversion in the visible and infrared
bands, respectively. Because of its proper absorption band and low cost, a silicon solar cell is an
economic and efficient choice to link the visible output port. For the infrared port, the successive
receiver for energy conversion can be either infrared solar cells or high-efficiency thermal modules,
such as a solar water heater coupled with a phase-change material [28]. The system efficiencies of
several feasible configurations were analyzed, and their details are reported in the following section.

5. Analyses and Discussions

5.1. System Efficiency

As mentioned above, different energy conversion devices for the proposed module will result in
different system efficiencies. For example, the visible port of the proposed module can be connected to
a commercial mono-crystalline silicon solar cell, with the external quantum efficiency (EQE) coarsely



Energies 2020, 13, 192 9 of 14

calculated as 75% [29], and the infrared port can be connected to a common water heater with a thermal
efficiency of 70% [30,31]. Along with the measured data of the proposed module, the system efficiency
is then estimated to be 25.9%.

Preferably, high-performance devices will be utilized for the proposed module. An example of
such a device is an inter-digitated back contact (IBC) silicon solar cell with a high EQE [32]. This type
of potential device will preferably be coupled to the visible port of the proposed module. On the other
hand, a commercial germanium cell with a high EQE is one possible choice for the infrared port [33].
According to the reported EQE data for these cells and the simulated spectral responses of the proposed
module, as illustrated in Figure 8, the system efficiency is calculated as 29.5%. The proposed module
using this combination of silicon and germanium cells is comparable in efficiency to other double-cell
techniques (for example, advancing tandem cells made of silicon and perovskite [34,35]).Energies 2020, 13, x FOR PEER REVIEW 10 of 14 
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Figure 8. External quantum efficiency (EQE) data for the aforementioned silicon and germanium
cells [32,33] and the normalized spectral responses of the visible and infrared ports in the
proposed module.

5.2. Loss Analyses and Efficiency Enhancement

In order to investigate the discrepancy between the simulated and measured module efficiency,
we performed loss analyses via simulation. The pertinent factors are described as follows. Unlike the
original design with the lenses integrated compactly, the fixture of the fabricated module produced
certain spaces for mounting the lenses, as shown in Figure 9. The modeling results show that such
incompactness reduced the module efficiency. Thus, a lens array designed with a high-fill-factor is
preferred. Meanwhile, the reflectance of the v-groove was not as ideal as unity. Thus, the reflectance
spectrum of the aluminum-coated film, as plotted in Figure 10, is not negligible. In addition, a laser
beam was utilized as a testing source to examine the surface quality of the v-groove, and scattering due
to the surface roughness was inspected. Based on these factors, the module efficiency was analyzed,
and the results are listed in Table 2. This analysis shows that the effects of these fabrication factors on
the module efficiency for the whole solar spectrum are close (each around 3% to 4%), and their synergy
dominates a 10% loss of such efficiency.

According to the above root cause analysis of the efficiency loss, improvement of module efficiency
lies in the high fill-factor for the lens array, the high-reflectance coating (such as a silver coating), and
the decreased scattering through the advanced polishing process. Furthermore, through modeling, we
found that the Fresnel loss occurring at each refractive interface is also a dominant factor. When all
Fresnel losses are eliminated, the module efficiency over the whole solar spectrum can be increased
theoretically from 45.2% to 51.2%. Although producing a module without any Fresnel loss is difficult,
a feasible approach for such a module would be to process two significant surfaces—the entrance
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surfaces of the grating and the light-guide—with an antireflective coating. Considering this feasible
antireflective-coating, the module efficiency over the whole solar spectrum is 49.3%, based on the
simulation results.
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Table 2. Analyses of the module efficiency for a module with specific fabrication factors.

No. Factors ηvis
module ηIR

module ηtotal
module

(1) Primary model a 53.8% 37.5% 45.2%
(2) (1) + Bolder between lenses 52.9% 31.0% 42.0%
(3) (2) + Reflectance of Al-coated film 47.4% 28.8% 38.1%
(4) (3) + Scattering effect 43.6% 26.3% 34.9%

Measurement 44.8% 24.6% 34.8%

Expected system efficiency b 42.8% 14.6% 29.5%
a The primary model considered the geometry and material of each component, the antireflective coating of lens, the
Fresnel loss at every refractive interface, and the half angle subtended by the sun. b The expected system efficiency
was calculated on the basis of model No. (4) for an embodiment with the proposed module linking assumptively to
an inter-digitated back contact (IBC) silicon solar cell and a commercial germanium cell [32,33].

5.3. Techniques Comparisons

The proposed side-absorption concentrated module is a zig-zag type of diffractive SBS. Although
SBS possesses the aforementioned electrical and thermal advantages, there are different issues and
challenges for different categories of SBS. The dichroic filtering category requires a dichroic filter
to perform spectral beam splitting [12]; however, filters made of metal suffer from a considerable
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absorption loss, while dielectric filters made from multiple thin layers generally decrease performance
after receiving solar insolation for a period of time. The liquid-absorption category uses liquid to
absorb the thermal portion of sunlight and cool the photovoltaics [36]. However, the flow of liquid
may affect the stability of the output power of the photovoltaics. The diffractive category can realize a
relatively compact structure. However, the fabrication accuracy of the diffractive element is a critical
factor and relates highly to the cost.

Among the available diffractive SBS techniques, the type using a common-axis possesses a simple
structure but suffers from shadowing effect and its resultant loss. The type with multiple optical axes
results in a compressed system by reducing the effective length of the optical axis. Nevertheless, the
energy loss occurring at the spacing between its spectrally adjacent receivers is unavoidable. The type
with a zig-zag axis contributes to another compact system by laterally (rather than longitudinally)
allocating the electric or thermal modules. However, the longer zig-zag path may induce more loss
due to the more probability of rays encountering the successive grooves. The performance of each
representative diffractive-SBS technique is listed in Table 3 for comparison. This comparison shows
that the performance of the proposed module is acceptable.

Table 3. Comparisons between the different diffractive-spectral-beam-splitters (SBS) techniques.

Category Characteristics of Technique Module Efficiency a or
System Efficiency Reference

Common axis

• A reflective hologram pasted
on the quadric surface to form a
spectral-beam-splitter

NA [13]

• A hologram mounted above
a broadband receiver, whose
center has an opening for
another spectrally selective
receiver

System efficiency = 21.4% for
a PV/T system a [14]

Multiple optical axis

• A nonuniform
diffractive-grating as a
spectral-beam-splitter

System efficiency = 34.7% for
a dual-cell (InGaP/GaAs)
system b

[17]

• Micro-prism arrays as a
spectral-beam-splitter

System efficiency = 46.05%
for a triple-cell
(InGaP/GaAs/InGaAs)
system c

[18]

Zig-zag axis

• An integrated
diffractive/refractive optical
element as a
spectral-beam-splitter, and a
waveguide with engraved
microstructures beneath the
spectral beam splitter

Module efficiency ≤ 55% b [20]

• Lenses, diffractive grating,
and a light-guide as the
condenser, the
spectral-beam-splitter, and the
out-coupling adapter,
respectively

Module efficiency = 34.8% d,
system efficiency = 29.5% for
a dual-cell (Si/Ge) system b

Proposed

a Equivalent to “Optical efficiency” in some other literatures”, b simulation data, c estimated results from the
measured optical efficiency, d measured data.

6. Conclusions

In this study, we proposed a side-absorption concentrated module as a spectral-beam-splitter
to separate the visible and infrared bands of sunlight for different energy-conversion applications.
The proposed module integrates diffractive grating, lenses, and a light-guide to split sunlight according
to spectral bands and to export the spectrum-split rays to individual planar ports. A design example
with seven units has been provided for demonstration. In the simulation, the grating efficiency and
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module efficiency of this module were counted as 63% and 45.2%, respectively, for the whole solar
spectrum. Experimentally, the components of the proposed module were fabricated and assembled;
the module efficiency for the whole solar spectrum was then measured as 34.8%. Using this type
of module with its visible and infrared ports linked to high-EQE silicon and germanium solar cells,
respectively, a system efficiency of 29.5% is expected (based on the simulation results and the released
data of solar cells). Accordingly, this system is comparable in efficiency to other double-cell systems.
Moreover, the details of efficiency loss were analyzed for the proposed module, while the approaches
to enhance module efficiency were discussed and presented. This analysis shows that when all Fresnel
losses and the pertinent factors, including fixture limitation, reflectance of Al-coated film, and scatting
effect are well-controlled, a module efficiency of 51.2% is expected for the whole solar spectrum. As for
the energy gain in a PV/T system, the worthiness of the hardware development, and the payback
time, they relate highly to PV materials, thermal system designs, the number of units of the proposed
module, the climate and weather conditions of the demonstration site, and so on. Since some of
them, such as the climate conditions, generally need sufficient time to acquire, collecting the necessary
data, optimizing the performance, and lowering the cost of the proposed module will be our future
researches for system realization.
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