Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (132)

Search Parameters:
Keywords = legume cover crops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4565 KiB  
Article
Legume–Cereal Cover Crops Improve Soil Properties but Fall Short on Weed Suppression in Chickpea Systems
by Zelalem Mersha, Michael A. Ibarra-Bautista, Girma Birru, Julia Bucciarelli, Leonard Githinji, Andualem S. Shiferaw, Shuxin Ren and Laban Rutto
Agronomy 2025, 15(8), 1893; https://doi.org/10.3390/agronomy15081893 - 6 Aug 2025
Abstract
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of [...] Read more.
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of fall-planted winter rye (WR) alone in 2021 and mixed with hairy vetch (HV) in 2022 and 2023 at Randolph farm in Petersburg, Virginia. The objectives were two-fold: (a) to examine the effect of CCs on soil properties using monthly growth dynamics and biomass harvested from fifteen 0.25 m2-quadrants and (b) to evaluate the efficiency of five termination methods: (1) green manure (GM); (2) GM plus pre-emergence herbicide (GMH); (3) burn (BOH); (4) crimp mulch (CRM); and (5) mow-mulch (MW) in suppressing weeds in chickpea fields. Weed distribution, particularly nutsedge, was patchy and dominant on the eastern side. Growth dynamics followed an exponential growth rate in fall 2022 (R2 ≥ 0.994, p < 0.0002) and a three-parameter sigmoidal curve in 2023 (R2 ≥ 0.972, p < 0.0047). Biomass averaged 55.8 and 96.9 t/ha for 2022 and 2023, respectively. GMH consistently outperformed GM in weed suppression, though GM was not significantly different from no-till systems by the season’s end. Kabuli-type chickpeas under GMH had significantly higher yields than desi types. Pooled data fitted well to a three-parametric logistic curve, predicting half-time to 50% weed coverage at 35 (MM), 38 (CRM), 40 (BOH), 46 (GM), and 53 (GMH) days. Relapses of CCs were consistent in no-till systems, especially BOH and MW. Although soil properties improved, CCs alone did not significantly suppress weed. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

12 pages, 1608 KiB  
Brief Report
Combining Grass-Legume Mixtures with Soil Amendments Boost Aboveground Productivity on Engineering Spoil Through Selection and Compensation Effects
by Zhiquan Zhang, Faming Ye, Hanghang Tuo, Yibo Wang, Wei Li, Yongtai Zeng and Hao Li
Diversity 2025, 17(8), 513; https://doi.org/10.3390/d17080513 - 25 Jul 2025
Viewed by 177
Abstract
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to [...] Read more.
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to facilitate ecological restoration. We have conducted continuous ecological experiments for two years using the following experimental treatments, covering indigenous soil, adding organic fertilizer, and applying compound fertilizer and organic fertilizer, with six types of sowing established under each soil treatment: monoculture and pairwise mixed cropping utilizing Elymus dahuricus (EDA), Dactylis glomerata (DGL), and Medicago sativa (MSA). Through the analysis of variance and the calculation of effect factors, our results indicated that compound fertilizer and organic fertilizer adding significantly improved vegetation cover and increased aboveground biomass, and the highest productivity was observed in the mixed sowing treatment of EDA and MSA. The effect coefficient model analysis further showed that the combination of EDA and MSA resulted in the highest selection and compensation effects on aboveground productivity. Two potential mechanisms drive enhanced productivity in mixed grasslands: the strengthening of the selection effect via increased legume nitrogen fixation, and the enhancement of the compensation effect through niche differentiation among species. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Graphical abstract

17 pages, 3355 KiB  
Article
Legume–Non-Legume Cover Crop Mixtures Enhance Soil Nutrient Availability and Physical Properties: A Meta-Analysis Across Chinese Agroecosystems
by Jiayu Ma, Baozhong Yin, Tian Gao, Kaixiao He, Xinqin Huang, Tiantong Jiang and Wenchao Zhen
Agronomy 2025, 15(8), 1756; https://doi.org/10.3390/agronomy15081756 - 22 Jul 2025
Viewed by 410
Abstract
Cover cropping has emerged as a pivotal sustainable agronomic practice aimed at enhancing soil health and sustaining crop productivity. To quantify its effects across diverse agroecosystems, we conducted a meta-analysis of 1877 paired observations from 114 studies (1980–2025) comparing cover cropping with bare [...] Read more.
Cover cropping has emerged as a pivotal sustainable agronomic practice aimed at enhancing soil health and sustaining crop productivity. To quantify its effects across diverse agroecosystems, we conducted a meta-analysis of 1877 paired observations from 114 studies (1980–2025) comparing cover cropping with bare fallow during fallow periods in major cereal systems across China. Cover cropping significantly reduced soil bulk density by 6.1% and increased key soil nutrients including total nitrogen (+13.1%), total phosphorus (+15.6%), hydrolysable nitrogen (+9.3%), available phosphorus (+11.1%), available potassium (+12.4%), soil organic matter (+11.7%), and microbial biomass carbon (+41.1%). Leguminous cover crops outperformed non-legumes in enhancing nitrogen availability, reflecting biological nitrogen fixation. Mixed-species cover crop mixtures showed superior benefits over monocultures, likely due to complementary effects on nutrient cycling and soil structure. Soil texture and initial soil organic carbon significantly moderated these outcomes. Furthermore, although overall soil pH remained stable, cover cropping exhibited a clear buffering effect, tending to regulate soil pH toward neutrality. Meta-regression analyses revealed a diminishing positive effect on total nitrogen (TN), available potassium (AK), and microbial biomass carbon (MBC) with an extended duration of cover cropping, suggesting potential saturation effects. These results underscore the context-dependent efficacy of cover cropping as a strategy for soil quality enhancement. Optimizing cover crop implementation should integrate the consideration of inherent soil characteristics, baseline fertility, and species composition to maximize agroecosystem resilience and sustainability. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

16 pages, 1927 KiB  
Article
Optimizing Nitrogen Fixation in Vicia sativa: The Role of Host Genetic Diversity
by María Isabel López-Román, Cristina Castaño-Herrero, Lucía De la Rosa and Elena Ramírez-Parra
Agronomy 2025, 15(6), 1479; https://doi.org/10.3390/agronomy15061479 - 18 Jun 2025
Viewed by 513
Abstract
Common vetch (Vicia sativa L.) is a legume widely used both as a grain and as forage due to its high protein content, which provides considerable nutritional enrichment for livestock feed. As a cover crop, it has the potential to fix atmospheric [...] Read more.
Common vetch (Vicia sativa L.) is a legume widely used both as a grain and as forage due to its high protein content, which provides considerable nutritional enrichment for livestock feed. As a cover crop, it has the potential to fix atmospheric nitrogen through symbiosis with rhizobia, contributing to sustainable agricultural systems by enhancing soil fertility and reducing the dependence on chemical fertilizers. Although much research has been focused on optimizing Rhizobium inoculants to enhance biological nitrogen fixation (BNF) in leguminous crops, the role of host plant genetic diversity in BNF has been underexplored. This study analyses a collection of V. sativa genotypes to evaluate their BNF by assaying their nodulation capacity, nodule nitrogenase activity, nitrogen fixation potential, and impact on biomass development. Our results reveal large variability in these parameters among the different genotypes, emphasizing the relevance of host legume diversity in the Rhizobium symbiosis. These findings show a direct relationship between nodule biomass development, nitrogen fixation capacity, shoot biomass production, and nitrogen content. However, no correlation was observed for other parameters such as the number of nodules, nitrogenase activity, and shoot nitrogen content. Taken together, these results suggest that selecting genotypes with high BNF capacity could be a promising strategy to improve nitrogen fixation in legume-based agricultural systems. Full article
(This article belongs to the Special Issue Natural and Non-Conventional Sources of Nitrogen for Plants)
Show Figures

Figure 1

18 pages, 652 KiB  
Article
The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland
by Irena Małecka-Jankowiak, Andrzej Blecharczyk, Zuzanna Sawinska, Tomasz Piechota and Robert Idziak
Sustainability 2025, 17(10), 4293; https://doi.org/10.3390/su17104293 - 9 May 2025
Viewed by 701
Abstract
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of [...] Read more.
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of conservation agriculture are crop diversification, minimizing tillage, and maintaining soil cover with plant residues. An important role in crop diversification is assigned to legumes. The research was conducted in 2016–2019 based on a long-term experiment established in 1999 (Brody/Poznań). The experiment with faba bean included four variants of tillage: 1—conventional tillage (CT), 2—reduced tillage (RT), 3—strip-tillage (ST), and 4—no-tillage (NT). The research took place in two extremely different weather conditions. Two very favorable years and two with catastrophic drought. Weather conditions had a greater effect on faba bean yields than the tillage systems. The highest faba bean seed yield was obtained in 2017. The seed yield ranged from 6.73 t ha−1 in NT to 7.64 t ha−1 after ST. A high seed yield (4.94–5.97 t ha−1) was also in 2016. In years characterized by low rainfall (2018 and 2019), the average seed yield was 1.89 and 1.74 t ha−1, respectively. Considering the sustainability of the assessed tillage systems in faba bean, both in terms of environment and production, RT and ST should be indicated as the most sustainable. They limit the intensity of tillage and can be classified as conservation tillage, as opposed to conventional tillage. NT provides the best soil protection and conservation, but in favorable weather conditions, it limits the yield level of faba beans. The yields obtained in RT and ST technologies were high, both in favorable and extremely unfavorable years. Given the increasing climatic instability and unpredictable weather, yield stability in various conditions is as important as ensuring conservation tillage. Full article
Show Figures

Figure 1

33 pages, 845 KiB  
Review
Sustainable Warm-Climate Forage Legumes: Versatile Products and Services
by James P. Muir, José C. Batista Dubeux Junior, Mércia V. Ferreira dos Santos, Jamie L. Foster, Rinaldo L. Caraciolo Ferreira, Mário de Andrade Lira, Barbara Bellows, Edward Osei, Bir B. Singh and Jeff A. Brady
Grasses 2025, 4(2), 16; https://doi.org/10.3390/grasses4020016 - 18 Apr 2025
Cited by 1 | Viewed by 1436
Abstract
Forage legumes, besides their use as ruminant feed supplements, contribute to other agricultural, forestry and natural ecosystems’ sustainability around the world. Our objective in this summary is to emphasize that versatility in the face of biotic, abiotic and socio-economic variability is among the [...] Read more.
Forage legumes, besides their use as ruminant feed supplements, contribute to other agricultural, forestry and natural ecosystems’ sustainability around the world. Our objective in this summary is to emphasize that versatility in the face of biotic, abiotic and socio-economic variability is among the most important traits that forage legumes contribute to sustaining human populations in those diverse ecosystems. Forage legumes could contribute even more to agroecosystems if we 1. consider ecosystem services as well as food, feed and fuel production; 2. more fully exploit what we already know about forage legumes’ multiple uses; and 3. focus greater attention and energy exploring and expanding versatility in currently used and novel versatile species. To draw attention to the importance of this versatility to sustainable grasslands, here we review multiple legumes’ roles as forage, bioenergy, pulses (legume seeds for human consumption), pharmaceuticals and cover crops as well as environmental services, in particular soil health, C sequestration and non-industrial organic N. The major points we single out as distinguishing sustainable versatile forage legumes include (1) multiple uses; (2) adaptation to a wide range of edaphoclimatic conditions; (3) flexible economic contributions; and (4) how genomics can harness greater legume versatility. We predict that, because of this versatility, forage legumes will become ever more important as climates change and human pressures on sustainable agro-environments intensify. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 1478 KiB  
Article
Impact of Three Decades of Conservation Management Systems on Carbon Management Index and Aggregate Stability
by Murilo Veloso, Fábio Farias Amorim, Jéssica Pereira de Souza and Cimélio Bayer
Sustainability 2025, 17(8), 3378; https://doi.org/10.3390/su17083378 - 10 Apr 2025
Cited by 1 | Viewed by 485
Abstract
The sustainability of agroecosystems depends on the maintenance of soil organic matter (SOM) and soil aggregate stability, which are key components of soil health. The long-term effects of conservation management systems, such as the adoption of no till (NT) associated with cover crops, [...] Read more.
The sustainability of agroecosystems depends on the maintenance of soil organic matter (SOM) and soil aggregate stability, which are key components of soil health. The long-term effects of conservation management systems, such as the adoption of no till (NT) associated with cover crops, on soil quality are still unclear. The aim of this study was to evaluate the long-term effects of NT systems combined with cropping systems ecologically intensified by the presence of legumes on the carbon management index (CMI) and the state of soil aggregation, as sensitive tools to assess the quality of soil management systems. NT combined with autumn and spring legume cover crops increased the proportion of soil aggregates > 2 mm, resulting in higher weighted average diameters and higher aggregation index values in comparison to conventional tillage (CT), which favored the soil microaggregate proportion. The soil C content was favored by NT only in the surface layer, while the use of legume cover crops increased the C stock by 23% compared to the system without legume cover crops in the 0–20 cm layer. In the topsoil under NT, the stocks of particulate organic matter (POM) and mineral-associated organic matter (MAOM) were 100% and 37% greater than in CT, respectively. A greater CMI was observed under NT compared to CT in systems with no legumes (18%), with one legume (52%), and with two legumes (72%) as cover crops. These results highlight no till’s positive impact on soil health, further enhanced by the legume-based ecological intensification of cropping systems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 2639 KiB  
Article
Comprehensive Assessment of Land Criticality and Agroforestry Suitability in the Upper Cikeruh Sub-Watershed, a Degraded Priority Area in Indonesia
by Marenda Ishak Sonjaya Sule, Shantosa Yudha Siswanto and Irwandhi Irwandhi
Sustainability 2025, 17(6), 2675; https://doi.org/10.3390/su17062675 - 18 Mar 2025
Viewed by 800
Abstract
The Upper Cikeruh Sub-watershed, part of the Citarum Basin and designated as one of Indonesia’s 15 Super Priority Watersheds, is facing severe degradation due to land use changes and deforestation, particularly in the upstream areas. This study assesses land criticality and suitability for [...] Read more.
The Upper Cikeruh Sub-watershed, part of the Citarum Basin and designated as one of Indonesia’s 15 Super Priority Watersheds, is facing severe degradation due to land use changes and deforestation, particularly in the upstream areas. This study assesses land criticality and suitability for agroforestry to guide sustainable land management practices. A semi-quantitative approach was used to evaluate land criticality through a scoring method, while qualitative match table analysis determined land suitability for specific agroforestry crops. Fieldwork was conducted in the upstream areas of the Cikeruh Sub-watershed, covering the administrative areas of Bandung and Sumedang. The results showed that most areas showed critical land conditions, with productivity identified as the most limiting factor, with scores as low as 30. The agroforestry suitability analysis showed that specific land mapping units (LMUs A, C, D, E, F, and N) were marginally suitable (S3) for crops such as legumes, upland rice, corn, soybeans, and chilies, with the main constraints being slope steepness and soil pH. This study highlights the urgent need to implement agroforestry practices as a restoration strategy in degraded landscapes. The findings provide actionable recommendations to improve land productivity while promoting sustainable watershed management in one of Indonesia’s critical areas. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

15 pages, 283 KiB  
Article
Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring
by Marko Zupanič, Tomaž Žnidaršič, Miran Podvršnik, Vilma Sem, Boštjan Kristan, Ludvik Rihter and Branko Kramberger
Plants 2025, 14(5), 726; https://doi.org/10.3390/plants14050726 - 27 Feb 2025
Viewed by 728
Abstract
A field experiment was conducted in two seasons (2019–2020 and 2020–2021) at three locations in Slovenia (Rogoza, Fala, and Brežice) to evaluate the yield and silage quality of winter cover crops (WCCs). The experiment included Italian ryegrass (IR) in pure stands, fertilized with [...] Read more.
A field experiment was conducted in two seasons (2019–2020 and 2020–2021) at three locations in Slovenia (Rogoza, Fala, and Brežice) to evaluate the yield and silage quality of winter cover crops (WCCs). The experiment included Italian ryegrass (IR) in pure stands, fertilized with nitrogen in spring, and mixtures of crimson clover (CRC), red clover (RC), and IR+CRC+RC without nitrogen fertilization in spring. The highest dry matter yield (DMY) was observed in IR+CRC+RC (4.98 t ha−1). For fresh feed, the CRC+RC treatment had significantly higher (p < 0.05) crude protein (208 g kg−1 DM), nitrate nitrogen (116.7 mg kg−1 DM), and buffering capacity (1290 mmol kg−1 DM) but significantly lower (p < 0.05) dry matter (128 g kg−1) and water-soluble carbohydrates (121 g kg−1 DM). For silage, the CRC+RC treatment had significantly lower (p < 0.05) dry matter (476 g kg−1 silage), metabolic energy (9.65 MJ kg−1 DM), net energy of lactation (5.77 MJ kg−1 DM), and neutral detergent fiber (375 g kg−1 DM) but higher ammonia nitrogen (66.5 g kg−1 of total nitrogen), crude protein (158 g kg−1 DM), and acid detergent fiber (279 g kg−1 DM). No significant differences (p > 0.05) were found among treatments for acetic, lactic, and butyric acid, crude fat, pH, and soil mineral nitrogen (Nmin). The results of the study show that the same or higher DMY and a comparable quality of highly wilted silage can be produced with mixed Italian ryegrass and clovers compared with those of Italian ryegrass in pure stands. The experiment aimed to determine whether clover-based mixtures can achieve comparable silage quality and dry matter yield without spring N fertilizers compared with those of pure stands of Italian ryegrass fertilized in spring. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
24 pages, 4791 KiB  
Article
Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes
by Mariana Raposo, Paulo Canaveira and Tiago Domingos
Sustainability 2025, 17(3), 1223; https://doi.org/10.3390/su17031223 - 3 Feb 2025
Viewed by 1449
Abstract
Soil carbon sequestration (SCS) is a nature-based, low-cost climate mitigation strategy that also contributes to the climate adaptation of agricultural systems. Some land-use and land-management practices potentially lead to an enhancement of the soil organic carbon (SOC) sink, such as no-till, the use [...] Read more.
Soil carbon sequestration (SCS) is a nature-based, low-cost climate mitigation strategy that also contributes to the climate adaptation of agricultural systems. Some land-use and land-management practices potentially lead to an enhancement of the soil organic carbon (SOC) sink, such as no-till, the use of cover crops, leaving residues on fields, improving the variety of legume species in grasslands and reducing grazing intensity. However, uncertainties remain both in estimating and measuring the impact of the application of certain practices, as these vary with the soil, climate and historic land use. IPCC (Intergovernmental Panel on Climate Change) guidelines are commonly used to estimate SOC and SOC sequestration potentials at different tiers. Here, the IPCC’s tier 1 methodology was applied to estimate (1) the sequestration potential of nine mitigation practices and (2) the emission or sequestration potential of four current land-change trends for n = 7092 unique agricultural sites in mainland Portugal. The conversion of irrigated crops to improved grasslands resulted in the highest average unit sequestration (1.05 tC ha−1 yr−1), while cropland conversion to poor degraded pasture (abandonment) resulted in the highest unit SOC loss (−0.08 tC ha−1 yr−1). The abandonment of cropland results in a national SOC loss of up to 0.09 MtC yr−1, while the improvement of poor degraded pastures has the highest national sequestration potential, equal to 0.6 MtC yr−1 (2.2 MtCO2eq yr−1), about 4% of Portugal’s emissions in 2021, if applied in all managed areas. The results enable a comparison between different practices and land uses; however, to enhance accuracy, a higher tier methodology tailored to the Portuguese context should be developed. Full article
Show Figures

Figure 1

17 pages, 1456 KiB  
Article
Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia
by Zoran Pržić, Aleksandar Simić, Snežana Brajević, Nebojša Marković, Ana Vuković Vimić, Mirjam Vujadinović Mandić and Mariana Niculescu
Agronomy 2025, 15(2), 253; https://doi.org/10.3390/agronomy15020253 - 21 Jan 2025
Viewed by 1200
Abstract
Faced with the challenges posed by climate change, Serbian viticulture is looking for sustainable solutions for adaptable production. This study shows that grass is a multifunctional tool for overcoming the challenges of intensive viticulture while maintaining the quality of the grapes. In a [...] Read more.
Faced with the challenges posed by climate change, Serbian viticulture is looking for sustainable solutions for adaptable production. This study shows that grass is a multifunctional tool for overcoming the challenges of intensive viticulture while maintaining the quality of the grapes. In a three-year research experiment (2020–2022), the maintenance of an inter-row sward in a vineyard with four certified high-quality French Cabernet Sauvignon clones was investigated, and its effects on the ampelographic composition of the grapes and the quality of the grape juice (must) were studied as a function of wine quality. A grass sward was established between the rows as a biological soil management system and as a climate change adaptation measure in a high-intensity viticultural system. A grass–legume mixture was used as an inter-row cover crop, with nitrogen applied in two doses (50 and 100 kg ha−1) in spring. The growth of the grasses responded to the nitrogen fertilisation, which was reflected in the biomass production, surface cover and nitrogen content in the biomass. At the end of the study, the biomass of the grass increased threefold when a high dose of nitrogen was applied compared to the non-fertilised grass. In contrast to the effects of nitrogen on the sward, N has no effect on the quantitative or qualitative parameters of the grapes. Clone 169 was separated for most grape mechanical parameters such as the bunch mass, all berries and the bunch stem; clone 15 showed the best grape juice quality parameters such as the sugar content and glycoacidometric index. The results show an option for climate change adaptation in viticulture that can mitigate the effects of rising temperatures, contribute to soil conservation and carbon storage in biomass and enable timely interventions in vineyards after heavy rainfall by creating accessible paths within the vineyards. The three-year effect of the different nutrient management of the sward in the inter-rows of Cabernet Sauvignon showed that the interaction between the two systems, sward and vine, is low and has no negative impact on the ampelographic and qualitative grape parameters. Full article
(This article belongs to the Special Issue Adaptations and Responses of Cropping Systems to Climate Change)
Show Figures

Figure 1

13 pages, 2125 KiB  
Article
Effects of Cover Crops on Nematode Communities in Spinach Production
by Elyse Aubry, Jerry Akanwari, Ping Liang, Walid Ellouze, Jonathan Gaiero and Tahera Sultana
Int. J. Mol. Sci. 2024, 25(24), 13366; https://doi.org/10.3390/ijms252413366 - 13 Dec 2024
Viewed by 983
Abstract
Agricultural soil environments contain different types of nematodes in all trophic levels that aid in balancing the soil food web. Beneficial free-living nematodes (FLNs) consist of bacterivores, fungivores, predators, and omnivores that help in the mineralization of the soil and the top-down control [...] Read more.
Agricultural soil environments contain different types of nematodes in all trophic levels that aid in balancing the soil food web. Beneficial free-living nematodes (FLNs) consist of bacterivores, fungivores, predators, and omnivores that help in the mineralization of the soil and the top-down control of harmful plant-parasitic nematodes (PPNs). Annually, USD 125 billion in worldwide crop losses are caused by PPNs, making them a plant pathogen of great concern for growers. Farmers have started to implement the use of cover crops in agricultural systems for the protection and enrichment of soil but research on how different cover crops affect nematode populations is lacking and in demand. This study aims to determine the effects of legume and grass cover crops, Cowpea (Vigna unguiculata) and Pearl Millet (Pennisetum glaucum), as well as their mixture on the abundance and diversity of FLN and PPN populations. Soil samples were collected at the time of cover crop maturity and spinach harvest to analyze nematode communities using both morphological and DNA metabarcoding analysis. The results showed that the application of Cowpea and Pearl Millet as well as their mixture in a spinach agricultural system led to the control of PPNs and proliferation of FLN communities, with each cover crop treatment demonstrating different advantages for the various nematode feeding groups. Soil property analysis did not show a significant difference except for magnesium and total nitrogen levels, which were significantly correlated with nematode community composition. The overall findings of our study indicate that the choice of cover crop implementation by growers for spinach cultivation should be based on specific soil health conditions, which in turn promote soil fertility and a healthy nematode community. Full article
(This article belongs to the Special Issue Interactions between Plants and Nematodes)
Show Figures

Figure 1

13 pages, 1701 KiB  
Article
Enteric Methane Emission from Cattle Grazing Systems with Cover Crops and Legume–Grass Pasture
by José Ignacio Gere, Silvina Beatriz Restovich, Juan Mattera, María Isabel Cattoni, Abimael Ortiz-Chura, Gabriela Posse and María Esperanza Cerón-Cucchi
Animals 2024, 14(23), 3535; https://doi.org/10.3390/ani14233535 - 7 Dec 2024
Cited by 1 | Viewed by 1887
Abstract
This study aims to quantify enteric methane (CH4) emission and dry matter intake (DMI) in beef steers under two rotational grazing systems: (i) a mixture of cover crops (vetch + ryegrass + forage radish) (CC) and (ii) alfalfa and fescue pasture [...] Read more.
This study aims to quantify enteric methane (CH4) emission and dry matter intake (DMI) in beef steers under two rotational grazing systems: (i) a mixture of cover crops (vetch + ryegrass + forage radish) (CC) and (ii) alfalfa and fescue pasture (AFP). Eighteen Hereford steers were divided into two groups (nine steers per group), assigned to either the CC or AFP. Methane emissions were measured using the SF6 tracer technique. The results showed that steers grazing CC produced 29% less CH4 in g/d compared to those on the AFP (119.1 vs. 167.1 g/d for CC and AFP, p < 0.05) and 36% less CH4 yield (4.3 vs. 6.7% of gross energy intake). However, average daily gain (ADG), DMI, and CH4 intensity (gCH4/kg ADG) did not significantly differ between treatments. The integration of CC in a cattle grazing system has the potential to reduce CH4 emissions by improving forage quality. Full article
Show Figures

Figure 1

26 pages, 1455 KiB  
Article
Nitrogen Residual Effect of Winter Cover Crops on Maize in Uruguay: Conventional and Isotopic Evaluation
by Cristina Mori Alvez, Carlos Perdomo Varela and Amabelia del Pino Machado
Agriculture 2024, 14(12), 2123; https://doi.org/10.3390/agriculture14122123 - 23 Nov 2024
Viewed by 716
Abstract
This study aimed to evaluate the nitrogen (N) residual effects of winter cover crops (CCs) on soil N availability and corn (Zea mays L.) performance over two growing seasons and at two sites in Uruguay. Both conventional and isotopic methods were used [...] Read more.
This study aimed to evaluate the nitrogen (N) residual effects of winter cover crops (CCs) on soil N availability and corn (Zea mays L.) performance over two growing seasons and at two sites in Uruguay. Both conventional and isotopic methods were used to assess the N residual effects of two legume monocultures, a legume–grass mixture, an oat monoculture, and a control without CCs. The experimental design was a randomized block with split plots, where CCs were applied to main plots and N rates (0 and 100 kg ha⁻1) to subplots. An isotopic trial with 15N was included to measure fertilizer N use efficiency (NUE). Results varied between sites: at Site 1, legume monocultures enhanced soil N availability and, along with N rate, significantly increased corn yield and N uptake. At Site 2, only the N rate affected these variables. Site 1 had a low crop 15N recovery, averaging 9.5% due to weeds and heavy rainfall, while Site 2 showed higher recovery, notably when corn succeeded lupine (35%) and mixture CCs (40%). The soil’s top layer and corn grain showed the highest 15N concentration. The study suggests that specific CC combinations tailored to site conditions may optimize corn yield and NUE. Full article
(This article belongs to the Special Issue Benefits and Challenges of Cover Crops in Agricultural Systems)
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Full-Length Transcriptomes Reconstruction Reveals Intraspecific Diversity in Hairy Vetch (Vicia villosa Roth) and Smooth Vetch (V. villosa Roth var. glabrescens)
by Weiyi Kong, Bohao Geng, Wenhui Yan, Jun Xia, Wenkai Xu, Na Zhao and Zhenfei Guo
Plants 2024, 13(23), 3291; https://doi.org/10.3390/plants13233291 - 22 Nov 2024
Cited by 1 | Viewed by 932
Abstract
Hairy vetch (Vicia villosa Roth) and smooth vetch (V. villosa Roth var. glabrescens) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective [...] Read more.
Hairy vetch (Vicia villosa Roth) and smooth vetch (V. villosa Roth var. glabrescens) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective route to mining their genetic resources. In this study, a hybrid sequencing approach combining SMRT and NGS technologies was applied. The results showed that 28,747 and 40,600 high-quality non-redundant transcripts with an average length of 1808 bp and 1768 bp were generated from hairy vetch and smooth vetch, including 24,864 and 35,035 open reading frames (ORFs), respectively. More than 96% of transcripts were annotated to the public databases, and around 25% of isoforms underwent alternative splicing (AS) events. In addition, 987 and 1587 high-confidence lncRNAs were identified in two vetches. Interestingly, smooth vetch contains more specific transcripts and orthologous clusters than hairy vetch, revealing intraspecific transcript diversity. The phylogeny revealed that they were clustered together and closely related to the genus Pisum. Furthermore, the estimation of Ka/Ks ratios showed that purifying selection was the predominant force. A putative 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHD/SDH) gene underwent strong positive selection and might regulate phenotypic differences between hairy vetch and smooth vetch. Overall, our study provides a vital characterization of two full-length transcriptomes in Vicia villosa, which will be valuable for their molecular research and breeding. Full article
(This article belongs to the Special Issue Genetic and Biological Diversity of Plants)
Show Figures

Figure 1

Back to TopTop