Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = lean blow-off

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2015 KiB  
Article
Low-Order Modelling of Extinction of Hydrogen Non-Premixed Swirl Flames
by Hazem S. A. M. Awad, Savvas Gkantonas and Epaminondas Mastorakos
Aerospace 2025, 12(8), 676; https://doi.org/10.3390/aerospace12080676 - 29 Jul 2025
Viewed by 170
Abstract
Predicting the blow-off (BO) is critical for characterising the operability limits of gas turbine engines. In this study, the applicability of a low-order extinction prediction modelling, which is based on a stochastic variant of the Imperfectly Stirred Reactor (ISR) approach, to predict the [...] Read more.
Predicting the blow-off (BO) is critical for characterising the operability limits of gas turbine engines. In this study, the applicability of a low-order extinction prediction modelling, which is based on a stochastic variant of the Imperfectly Stirred Reactor (ISR) approach, to predict the lean blow-off (LBO) curve and the extinction conditions in a hydrogen Rich-Quench-Lean (RQL)-like swirl combustor is investigated. The model predicts the blow-off scalar dissipation rate (SDR), which is then extrapolated using Reynolds-Averaged Navier–Stokes (RANS) cold-flow simulations and simple scaling laws, to determine the critical blow-off conditions. It has been found that the sISR modelling framework can predict the BO flow split ratio at different global equivalence ratios, showing a reasonable agreement with the experimental data. This further validates sISR as an efficient low-order modelling flame extinction tool, which can significantly contribute to the development of robust hydrogen RQL combustors by enabling the rapid exploration of combustor operability during the preliminary design phases. Full article
(This article belongs to the Special Issue Scientific and Technological Advances in Hydrogen Combustion Aircraft)
Show Figures

Figure 1

19 pages, 12987 KiB  
Article
Large Eddy Simulation of the Effect of Hydrogen Ratio on the Flame Stabilization and Blow-Off Dynamics of a Lean CH4/H2/Air Bluff-Body Flame
by Lei Cheng, Meng Zhang, Shiyao Peng, Jinhua Wang and Zuohua Huang
Appl. Sci. 2024, 14(5), 1846; https://doi.org/10.3390/app14051846 - 23 Feb 2024
Cited by 3 | Viewed by 1817
Abstract
This study investigated the flame structure and dynamics of a bluff-body flame when numerically close to blow-off conditions. This includes the impact of the hydrogen ratio on lean CH4/H2/air flame stabilization and blow-off characteristics. In this study, we assessed [...] Read more.
This study investigated the flame structure and dynamics of a bluff-body flame when numerically close to blow-off conditions. This includes the impact of the hydrogen ratio on lean CH4/H2/air flame stabilization and blow-off characteristics. In this study, we assessed the impacts of four different hydrogen ratios: 0%, 30%, 60%, and 90%. Large eddy simulation (LES) was coupled with a thickened flame (TF) model to determine the turbulent combustion using a 30-species skeletal mechanism. The numerical results were progressively validated using OH-PLIF and PIV techniques. The results obtained from the numerical simulations showed minor differences with the experimental data on the velocity field and flame structure for all conditions. The presented results reveal that the flame is stabilized in higher-strain-rate spots more easily in the presence of high hydrogen ratios. Moreover, the flame location moves away from the concentrated vortex area with an increasing hydrogen ratio. The results of our blow-off investigation indicate that the blow-off sequence of a premixed bluff-body flame can be separated into two stages. The entire blow-off process becomes shorter with an increase in the hydrogen ratio. The primary reason for global extinction is a reduction in the heat release rate, and enstrophy analysis implies that blending hydrogen can reduce the enstrophy values of flames at the downstream locations. The dilatation and baroclinic torque terms decrease close to blow-off, but their decline is not significant in high-hydrogen-ratio conditions. Full article
(This article belongs to the Special Issue Advances in Combustion and Renewable Energy)
Show Figures

Figure 1

14 pages, 5319 KiB  
Article
Transfer Functions of Ammonia and Partly Cracked Ammonia Swirl Flames
by Nader N. Shohdy, Mhedine Alicherif and Deanna A. Lacoste
Energies 2023, 16(3), 1323; https://doi.org/10.3390/en16031323 - 27 Jan 2023
Cited by 15 | Viewed by 4631
Abstract
The replacement of hydrocarbon fuels by ammonia in industrial systems is challenging due to its low burning velocity, its narrow flammability range, and a large production of nitric oxide and nitrogen dioxide when burned close to stoichiometric conditions. Cracking a fraction of ammonia [...] Read more.
The replacement of hydrocarbon fuels by ammonia in industrial systems is challenging due to its low burning velocity, its narrow flammability range, and a large production of nitric oxide and nitrogen dioxide when burned close to stoichiometric conditions. Cracking a fraction of ammonia into hydrogen and nitrogen prior to injection in the combustion chamber is considered a promising strategy to overcome these issues. This paper focuses on evaluating how different levels of ammonia cracking affect the overall burning velocity, the lean blow-off limit, the concentration of nitric oxide and nitrogen dioxide, and the flame response to acoustic perturbations. Swirl stabilized premixed flames of pure ammonia–air and ammonia–hydrogen–nitrogen–air mixtures mimicking 10%, 20%, and 28% of cracking are experimentally investigated. The results show that even though ammonia cracking is beneficial for enhancing the lean blow-off limit and the overall burning velocity, its impact on pollutant emissions and flame stability is detrimental for a percentage of cracking as low as 20%. Based on an analysis of the flame dynamics, reasons for these results are proposed. Full article
(This article belongs to the Special Issue Low-Carbon Fuel Combustion from Fundamentals to Applications)
Show Figures

Figure 1

18 pages, 8500 KiB  
Article
Effect of Fuel-Injection Distance and Cavity Rear-Wall Height on the Flameholding Characteristics in a Mach 2.52 Supersonic Flow
by Zhonghao He, Hongbo Wang, Fan Li, Yifu Tian, Minggang Wan and Jiajian Zhu
Aerospace 2022, 9(10), 566; https://doi.org/10.3390/aerospace9100566 - 29 Sep 2022
Cited by 7 | Viewed by 2272
Abstract
The ethylene-fueled flameholding characteristics of a cavity-based scramjet combustor are experimentally and numerically investigated. The test facility used the air heater, which heats air from room temperature to total temperature 1477 K. A nozzle is installed behind the heater outlet to increase the [...] Read more.
The ethylene-fueled flameholding characteristics of a cavity-based scramjet combustor are experimentally and numerically investigated. The test facility used the air heater, which heats air from room temperature to total temperature 1477 K. A nozzle is installed behind the heater outlet to increase the air speed to Mach 2.52. Two cavity geometries with different rear-wall heights of 8 mm and 10 mm and two injection distances upstream of the cavities of 10 mm and 40 mm are compared to show the effect of these parameters. The CH* spontaneous emission images obtained by dual-camera synchronous shooting and the wall-pressure distribution obtained by a pressure-scan system are used to capture the flame dynamics. The global equivalence ratio range for different combination schemes is controlled from 0.14 to 0.27 in this paper. The results show that the conventional cavity (the rear-wall height is 10 mm) and the shorter injection distance can effectively decrease the lean blowoff limit of the combustor, while the rear-wall-expansion cavity (the rear-wall height is 8 mm) and the longer injection distance can effectively increase the rich blowoff limit. Compared with the injection distance, the rear-wall height of the cavity has little effect on the oscillation distribution of the shear layer-stabilized flame. However, the fuel-injection distance and cavity rear-wall height both have great influence on the spatial distribution of the flame. Full article
(This article belongs to the Special Issue Aerospace Combustion Engineering)
Show Figures

Figure 1

12 pages, 1872 KiB  
Article
Computations of a Bluff-Body Stabilised Premixed Flames Using ERN Method
by Shokri Amzin
ChemEngineering 2022, 6(4), 46; https://doi.org/10.3390/chemengineering6040046 - 24 Jun 2022
Cited by 1 | Viewed by 2248
Abstract
Combustible carbon-based energy is still prevailing as the world’s leading energy due to its high energy density. However, the oxidation of these hydrocarbons disturbs the natural carbon cycle greatly by increasing greenhouse gases. As emission legislation becomes more rigorous, lean premixed combustion becomes [...] Read more.
Combustible carbon-based energy is still prevailing as the world’s leading energy due to its high energy density. However, the oxidation of these hydrocarbons disturbs the natural carbon cycle greatly by increasing greenhouse gases. As emission legislation becomes more rigorous, lean premixed combustion becomes promising because it can reduce nitrogen oxides (NOx) and Carbon Monoxide (CO) emissions without compromising efficiency. However, utilising lean premixed flames in industrial combustors is not easy because of its thermo-acoustic instabilities associated with pressure fluctuations and the non-linearity in the mean reaction rate. Therefore, reliable predictive combustion models are required to predict emissions with sensible computational costs to use the mode efficiently in designing environmentally friendly combustion systems. Along with the promising methodologies capable of modelling turbulent premixed flames with low computational costs is the ERN-RANS framework. Thus, this study aims to compute a bluff-body stabilised premixed flames close to blow-Off using the ERN-RANS framework. As a result, a satisfactory agreement is reached between the predicted and measured values. Full article
Show Figures

Figure 1

13 pages, 3758 KiB  
Article
Flame Stabilization and Blow-Off of Ultra-Lean H2-Air Premixed Flames
by Faizan Habib Vance, Yuriy Shoshin, Philip de Goey and Jeroen van Oijen
Energies 2021, 14(7), 1977; https://doi.org/10.3390/en14071977 - 2 Apr 2021
Cited by 21 | Viewed by 3139
Abstract
The manner in which an ultra-lean hydrogen flame stabilizes and blows off is crucial for the understanding and design of safe and efficient combustion devices. In this study, we use experiments and numerical simulations for pure H2-air flames stabilized behind a [...] Read more.
The manner in which an ultra-lean hydrogen flame stabilizes and blows off is crucial for the understanding and design of safe and efficient combustion devices. In this study, we use experiments and numerical simulations for pure H2-air flames stabilized behind a cylindrical bluff body to reveal the underlying physics that make such flames stable and eventually blow-off. Results from CFD simulations are used to investigate the role of stretch and preferential diffusion after a qualitative validation with experiments. It is found that the flame displacement speed of flames stabilized beyond the lean flammability limit of a flat stretchless flame (ϕ=0.3) can be scaled with a relevant tubular flame displacement speed. This result is crucial as no scaling reference is available for such flames. We also confirm our previous hypothesis regarding lean limit blow-off for flames with a neck formation that such flames are quenched due to excessive local stretching. After extinction at the flame neck, flames with closed flame fronts are found to be stabilized inside a recirculation zone. Full article
(This article belongs to the Special Issue Modelling of Combustion and Detonation of Hydrogen)
Show Figures

Figure 1

15 pages, 2801 KiB  
Article
Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off
by Shokri Amzin and Mohd Fairus Mohd Yasin
Computation 2021, 9(4), 43; https://doi.org/10.3390/computation9040043 - 30 Mar 2021
Cited by 4 | Viewed by 3185
Abstract
As emission legislation becomes more stringent, the modelling of turbulent lean premixed combustion is becoming an essential tool for designing efficient and environmentally friendly combustion systems. However, to predict emissions, reliable predictive models are required. Among the promising methods capable of predicting pollutant [...] Read more.
As emission legislation becomes more stringent, the modelling of turbulent lean premixed combustion is becoming an essential tool for designing efficient and environmentally friendly combustion systems. However, to predict emissions, reliable predictive models are required. Among the promising methods capable of predicting pollutant emissions with a long chemical time scale, such as nitrogen oxides (NOx), is conditional moment closure (CMC). However, the practical application of this method to turbulent premixed flames depends on the precision of the conditional scalar dissipation rate,ζ Nc|ζ, model. In this study, an alternative closure for this term is implemented in the RANS-CMC method. The method is validated against the velocity, temperature, and gas composition measurements of lean premixed flames close to blow-off, within the limit of computational fluid dynamic (CFD) capability. Acceptable agreement is achieved between the predicted and measured values near the burner, with an average error of 15%. The model reproduces the flame characteristics; some discrepancies are found within the recirculation region due to significant turbulence intensity. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

Back to TopTop