Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off
Abstract
:1. Introduction
2. Related Works
3. CMC Method
3.1. CMC Governing Equations
3.2. Turbulence Model Closure
3.3. Modelling of Conditional Scalar Dissipation Rate
4. Test Case
5. Computational Approach and Parameters
6. Results and Discussion
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swaminathan, N.; Bray, K.N. Turbulent Premixed Flames; Cambridge University Press: Cambridge, UK, 2011; Available online: https://www.cambridge.org/core/books/turbulent-premixed-flames/FD00E0314B0872947BCD3661F63EC203 (accessed on 29 March 2021).
- Dowlin, A.P. The Challenges of Lean Premixed Combustion. In Proceedings of the International Gas Turbine Congress, Tokyo, Japan, 2–7 November 2003. [Google Scholar]
- Brewster, B.S.; Cannon, S.M.; Farmer, J.R.; Meng, F. Modelling of Lean Premixed Combustion in Stationary Gas Turbines. Prog. Energy Combust. Sci. 1999, 4, 353–385. [Google Scholar] [CrossRef]
- Correa, S.M. A review of NOx formation Under Gas Turbine Combustion Conditions. Combust. Sci. Technol. 1993, 87, 329–362. [Google Scholar] [CrossRef]
- Driscoll, J.F. Turbulent Premixed Combustion: Flamelet Structure and its Effect on Turbulent Burning Velocities. Prog. Energy Combust. Sci. 2008, 34, 91–134. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and Stability of Lean-Premixed Swirl-stabilized Combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Echekki, T.; Mastorakos, E. Turbulent Combustion Modelling Advances, New Trends and Perspectives; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Shimada, Y.; Thornber, B.; Drikakis, D. High-order Implicit Large Eddy Simulation of gaseous fuel injection and mixing of a bluff body burner. Comput. Fluids 2011, 44, 229–237. [Google Scholar] [CrossRef]
- Klimenko, A.Y.; Bilger, R.W. Conditional Moment Closure for Turbulent Combustion. Prog. Energy Combust. Sci. 1999, 25, 595–687. [Google Scholar] [CrossRef]
- Rogersson, J.W. Measurements and Modelling of a Bagasse-Fired Boiler. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2006. [Google Scholar]
- Kim, S.H.; Huh, K.Y.; Tao, L. Application of the elliptic Conditional Moment Closure model to a two-dimensional non-premixed methanol bluff body flame. Combust. Flame 1999, 120, 75–90. [Google Scholar] [CrossRef]
- Sreedhara, S.; Huh, K.Y. Modelling of turbulent two-dimensional non-premixed Methane-Hydrogen flame over a bluff body using first and second-order elliptic Conditional Moment Closure. Combust. Flame 2005, 143, 119–134. [Google Scholar] [CrossRef]
- Kim, S.; Mastorakos, E. Simulations of turbulent lifted jet flames with two-dimensional conditional Moment Closure. Proc. Combust. Inst. 2005, 30, 911–918. [Google Scholar] [CrossRef]
- Wright, Y.M.; De Paola, G.; Boulouchos, K.; Mastorakos, E. Simulations of spray autoignition and flame establishment with two-dimensional CMC. Combust. Flame 2005, 143, 402–419. [Google Scholar] [CrossRef]
- Zhang, H.; Giusti, A.; Mastorakos, E. LES/CMC Modelling of Ignition and Flame Propagation in a Non-premixed Methane Jet. Proc. Combust. Instit. 2018, 37, 2125–2132. [Google Scholar] [CrossRef] [Green Version]
- Sitte, M.P.; Mastorakos, E. Modelling of spray flames with Doubly Conditional Moment Closure. Flow Turb. Combust. 2017, 99, 933–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Mastorakos, E. LES/CMC Modelling of a Gas Turbine Model Combustor with Quick Fuel Mixing. Flow Turb. Combust. 2018, 102, 909–930. [Google Scholar] [CrossRef] [Green Version]
- Yunardi, Y.; Woolley, R.M.; Fairweather, M. Conditional Moment Closure prediction of soot formation in turbulent non-premixed ethylene flames. Combust. Flame 2008, 152, 360–376. [Google Scholar] [CrossRef]
- Amzin, S.; Swaminathan, N.; Rogerson, J.W.; Kent, J.H. Conditional Moment Closure for Turbulent Premixed Flames. Combust. Sci. Technol. 2012, 184, 1–25. [Google Scholar] [CrossRef]
- Amzin, S.; Swaminathan, N. Conditional Moment Closure for Turbulent Lean Premixed Flames. Combust. Theory Model. 2013, 17, 1125–1153. [Google Scholar] [CrossRef]
- Amzin, S.; Domagała, M. Modelling of Conditional Scalar Dissipation Rate in Turbulent Premixed Combustion. Computation 2021, 9, 26. [Google Scholar] [CrossRef]
- Farrace, D.; Chung, K.; Bolla, M.; Wright, Y.M.; Boulouchos, K.; Mastorakos, E. A LES-CMC formulation for premixed flames including differential diffusion. Combust. Theory Model. 2017, 22, 411–431. [Google Scholar] [CrossRef]
- Farrace, D.; Chung, K.; Pandurangi, S.S.; Wright, Y.M.; Boulouchos, K.; Swaminathan, N. Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off. Proc. Combust. Instit. 2016, 36, 1977–1985. [Google Scholar] [CrossRef]
- Chen, Y.C.; Peters, N.; Schneemann, G.A.; Wruck, N.; Renz, U.; Mansour, M.S. The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 1996, 107, 223–224. [Google Scholar] [CrossRef]
- Dunn, M.J.; Masri, A.R.; Bilger, R.W. A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 2007, 151, 46–60. [Google Scholar] [CrossRef]
- Kolla, H.; Rogerson, J.W.; Swaminathan, N. Scalar Dissipation Rate Modelling and its Validation. Combust. Sci. Tech. 2009, 181, 518–535. [Google Scholar] [CrossRef]
- Veynante, D.; Vervisch, L. Turbulent Combustion Modelling. Prog. Energy Combust. Sci. 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Poinsot, T.; Veyante, D. Theoretical and Numerical Combustion, 2nd ed.; Westview Press: Philadelphia, PA, USA, 2005. [Google Scholar]
- Swaminathan, N.; Bilger, R.W. Analysis of Conditional Moment Closure for Turbulent Premixed Flames. Combust. Theory Model. 2001, 5, 241–260. [Google Scholar] [CrossRef]
- Colucci, P.J.; Jaberi, F.A.; Givi, P.; Pope, S.B. Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows. Phys. Fluids. 1998, 10, 499–515. [Google Scholar] [CrossRef] [Green Version]
- Pope, S.B. An Explanation of the Turbulent Round Jet/Plane Jet Anomaly. AIAA J. 1980, 16, 279–281. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Goncharsky, A. Numerical Method for the Solution of Ill-Posed Problems; Kluwer Academic: Moscow, Russia, 1990. [Google Scholar]
- Bushe, W.K.; Steiner, H. Conditional Moment Closure for Large Eddy Simulation of Non-Premixed Turbulent Reacting. Flows Phys. Fluids 1999, 11, 1896–1906. [Google Scholar] [CrossRef]
- Steiner, H.; Bushe, W.K. Large-eddy Simulation of a Turbulent Reacting Jet with Conditional Source Term Estimation. Phys. Fluids 2001, 13, 754–769. [Google Scholar] [CrossRef]
- Hestenes, M.R.; Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bur. Stand. 1952, 49, 409–435. [Google Scholar] [CrossRef]
- Nandula, S.; Pitz, R.; Barlow, R.; Fiechtner, G. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor. In Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 15–18 January 1996. [Google Scholar]
- Nandula., S. Lean Premixed Flame Structure in Intense Turbulence: Rayleigh/Raman/LIF Measurements and Modelling. Ph.D. Thesis, Faculty of the Graduate School, Vanderbilt University, Nashville, TN, USA, 2003. Available online: https://ui.adsabs.harvard.edu/abs/2003PhDT........33N/abstract (accessed on 29 March 2021).
- Andreini, A.; Bianchini, C.; Innocenti, A. Large Eddy Simulation of a Bluff Body Stabilized Lean Premixed Flame. J. Combust. 2014, 2014, 710254. [Google Scholar] [CrossRef] [Green Version]
- Sudarma, A.F.; Al-Witry, A.; Morsy, M.H. RANS Numerical Simulation of Lean Premixed Bluff Body Stabilized Combustor: Comparison of Turbulence Models. J. Thermal Eng. 2017, 3, 1561–1573. [Google Scholar] [CrossRef]
- Zimont, V. Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Numbers. Combust. Explos. Shock Waves 1979, 15, 305–311. [Google Scholar] [CrossRef]
- Rogerson, J.W.; Kent, J.H.; Bilger, R.W. Conditional moment closure in a bagasse-fired boiler. Proc. Combust. Inst. 2007, 31, 2805–2811. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere: Washington, DC, USA, 1980. [Google Scholar]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Thomas Bowman, C.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; et al. GRI-Mech 3.0; The Gas Research Institute: Des Plaines, IL, USA, 2011; Available online: http://www.me.berkeley.edu/grimech (accessed on 29 March 2021).
- Kee, R.J.; Grcar, J.F.; Smooke, M.D.; Miller, J.A. A Fortran Program. For Modelling Steady Laminar One-Dimensional Premixed Flames; Report SAND85-8240; Sandia National Laboratories: Livermore, CA, USA, 1985. [Google Scholar]
V(m/s) | D(mm) | T (K) | P (bar) | I (%) | Re(D) |
---|---|---|---|---|---|
15 | 44.45 | 294.0 | 1.0 | 24.0 | 43,400 |
P | u | v | w | k | ɛ | h | µ | ρ | T | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.1 | 0.1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amzin, S.; Mohd Yasin, M.F. Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off. Computation 2021, 9, 43. https://doi.org/10.3390/computation9040043
Amzin S, Mohd Yasin MF. Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off. Computation. 2021; 9(4):43. https://doi.org/10.3390/computation9040043
Chicago/Turabian StyleAmzin, Shokri, and Mohd Fairus Mohd Yasin. 2021. "Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off" Computation 9, no. 4: 43. https://doi.org/10.3390/computation9040043
APA StyleAmzin, S., & Mohd Yasin, M. F. (2021). Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off. Computation, 9(4), 43. https://doi.org/10.3390/computation9040043