Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = laser shock forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 158
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

13 pages, 2262 KiB  
Article
Application of Bioinspired Structural Ceramics with High-Temperature Electrical Insulation and High Adhesion in K-Type Coaxial Thermocouples
by Zhenyin Hai, Yue Chen, Zhixuan Su, Yemin Wang, Shigui Gong, Yihang Zhang, Shanmin Gao, Chengfei Zhang, Zhangquan Wang, Hongwei Ji, Chenyang Xue and Zhichun Liu
Materials 2025, 18(12), 2901; https://doi.org/10.3390/ma18122901 - 19 Jun 2025
Viewed by 346
Abstract
Surface erosion of the coaxial thermocouple probe initiates continuous bridging of thermoelectric materials on the insulation layer surface, forming new temperature measurement junctions. This inherent ability to measure continuous self-erosion ensures the operational reliability of the coaxial thermocouples in high-temperature ablative environments. However, [...] Read more.
Surface erosion of the coaxial thermocouple probe initiates continuous bridging of thermoelectric materials on the insulation layer surface, forming new temperature measurement junctions. This inherent ability to measure continuous self-erosion ensures the operational reliability of the coaxial thermocouples in high-temperature ablative environments. However, the fabrication of a high-temperature electrical insulation layer and a high-adhesion insulating layer in the coaxial thermocouples remains a challenge. Inspired by calcium carbonate/oxalate crystals in jujube leaves that strengthen the leaves, a bioinspired structural ceramic (BSC) mimicking these needle-like crystals is designed. This BSC demonstrates excellent high-temperature insulation (with insulation impedance of 2.55 kΩ at 1210 °C) and adhesion strength (35.3 Newtons). The BSC is successfully used as the insulating layer in a K-type coaxial thermocouple. The generation rules for surface junctions are systematically studied, revealing that stable and reliable measurement junctions can be created when the sandpaper grit does not exceed 600#. Static test results show that the K-type coaxial thermocouple ranges from 200 °C to 1200 °C with an accuracy of 1.1%, a drift rate better than 0.0137%/h, and hysteresis better than 0.81%. Dynamic test results show that the response time is 1.08 ms. The K-type coaxial thermocouple can withstand a high-temperature flame impact for 300 s at 1200 °C, as well as over forty cycles of high-power laser thermal shock, while maintaining good response characteristics. Therefore, the K-type coaxial thermocouple designed in this study provides an ideal solution for long-term temperature monitoring of the thermal components of aerospace engines under extremely high-temperature, high-speed, and strong thermal shock conditions. Full article
Show Figures

Figure 1

20 pages, 5550 KiB  
Article
The Key Process Factors in Prestressed Laser Peen Forming and the Design of Parameters Through an Artificial Neural Network
by Jiayang Lyu, Yongjun Wang, Zhiwei Wang and Junbiao Wang
Metals 2025, 15(4), 445; https://doi.org/10.3390/met15040445 - 16 Apr 2025
Viewed by 375
Abstract
This research investigated the influences of some key factors in the prestressed laser peen forming (PLPF) process, namely, the plate thickness, the coverage ratio, and the prestress, on the deformation of 2024-T351 rectangular plates through experiments and numerical simulations. In the experiments, laser [...] Read more.
This research investigated the influences of some key factors in the prestressed laser peen forming (PLPF) process, namely, the plate thickness, the coverage ratio, and the prestress, on the deformation of 2024-T351 rectangular plates through experiments and numerical simulations. In the experiments, laser parameters, such as the laser energy and spot size, were kept unchanged, and prestress was applied through a piece of self-developed, four-point-bending equipment. The curvature radius of the samples was measured through a digital radius gauge. A corresponding finite element analysis (FEA) model of PLPF was also established to simulate the full procedure of the PLPF, including prebending, laser shock peening, and spring back. Based on the PLPF experimental results, an artificial neural network (ANN) was trained to help to design the process parameters, including the coverage ratio and the amount of prebending, according to the plate thickness and the target curvature radius. By adding a penalty term to the loss function, the amount of prebending (AOP) can be reduced as much as possible. The validation of the ANN was confirmed by three other PLPF experiments. Full article
Show Figures

Figure 1

16 pages, 1975 KiB  
Article
SWEEPS-Assisted Antibacterial Photodynamic Therapy Against Dual-Species Biofilms in Mandibular Molars: An In Vitro Study
by Pargol Guity, Shima Afrasiabi, Ali Shahi Ardakani, Stefano Benedicenti, Antonio Signore, Nasim Chiniforush and Kiumars Nazari Moghaddam
Pharmaceuticals 2025, 18(4), 558; https://doi.org/10.3390/ph18040558 - 10 Apr 2025
Viewed by 612
Abstract
Objectives: The synergistic effect of shock wave-enhanced emission photoacoustic streaming (SWEEPS) and antimicrobial photodynamic therapy (aPDT) in mandibular molar root canal disinfection remains underexplored, particularly against dual-species biofilms that better simulate clinical conditions. This study evaluates their combined antimicrobial efficacy against Enterococcus faecalis [...] Read more.
Objectives: The synergistic effect of shock wave-enhanced emission photoacoustic streaming (SWEEPS) and antimicrobial photodynamic therapy (aPDT) in mandibular molar root canal disinfection remains underexplored, particularly against dual-species biofilms that better simulate clinical conditions. This study evaluates their combined antimicrobial efficacy against Enterococcus faecalis and Candida albicans biofilms and assesses potential tooth discoloration caused by riboflavin and nano-curcumin. Materials and Methods: The mesiobuccal canals of 57 extracted mandibular molars were inoculated with E. faecalis and C. albicans biofilms. The antimicrobial effects were assessed using riboflavin or nano-curcumin with a 450 nm diode laser (BDL), SWEEPS, or their combinations, compared to 5.25% NaOCl (positive control) and saline (negative control). Biofilm reduction was quantified by colony-forming units (CFUs/mL), and discoloration was evaluated using the ΔE metric in the CIE L*a*b* color space. Results: Both microorganisms showed a significant decrease in colony numbers in all experimental groups compared to the negative control (p < 0.001), except for E. faecalis, where no significant difference was observed between the riboflavin/nano-curcumin groups and the negative control. Combining riboflavin or nano-curcumin with SWEEPS or BDL significantly enhanced antimicrobial efficacy compared to individual treatments (p < 0.001). The combined photodynamic therapy and SWEEPS groups showed the lowest colony counts. The ΔE values were, on average, 1.81 for riboflavin and 1.09 for nano-curcumin. Conclusions: The combination of SWEEPS and aPDT effectively reduces E. faecalis and C. albicans biofilms in molars, supporting its potential as an adjunct in endodontic disinfection. Minimal discoloration further highlights its clinical applicability. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

20 pages, 5723 KiB  
Article
Influence of Overloading on Residual Stress Distribution in Surface-Treated Wire Arc Additive-Manufactured Steel Specimens
by Fraser O’Neill, Emmet McLaughlin, Anna Ermakova and Ali Mehmanparast
Materials 2025, 18(7), 1551; https://doi.org/10.3390/ma18071551 - 29 Mar 2025
Cited by 1 | Viewed by 645
Abstract
Many countries around the world are in a race against time to decarbonise their energy systems. One of the avenues being explored in detail is Offshore Renewable Energy (ORE), with technologies such as wind, wave, and tidal. All of these technologies are in [...] Read more.
Many countries around the world are in a race against time to decarbonise their energy systems. One of the avenues being explored in detail is Offshore Renewable Energy (ORE), with technologies such as wind, wave, and tidal. All of these technologies are in their infancy within the marine environment and required heavy Research and Development (R&D) to make them commercially viable. With so much demand for these industries, the supply chain is heavily constrained. A solution that has shown great potential to alleviate the pressure on the supply chain is the use of Wire Arc Additive Manufacturing (WAAM) for the use of onsite repair or manufacture for components. This is due to its ability to produce large-scale parts, with low emissions and at a lower cost than other Additive Manufacturing (AM) processes. The opportunity to use this technology could result in shorter downtimes and lead to a reduction in the Levelised Cost of Energy (LCOE). However, knowing that offshore structures are subject to cyclic loading conditions during their operational lifespan, fatigue properties of new materials and manufacturing processes must be well documented and studied to avoid any catastrophic failures. An issue often seen with WAAM is the presence of residual stresses. This study looks at fatigue cracking on Compact Tension C(T) specimens that have undergone laser shock peening and rolling, surface treatment processes that form compressive residual stresses at the surface of the material. In this study, the influence of fatigue overloading on the residual stress distribution in surface-treated WAAM specimens is evaluated and the effectiveness of the post-processing techniques on the subsequent fatigue behaviour is explored. Full article
Show Figures

Figure 1

18 pages, 22204 KiB  
Article
Oxide Removal Mechanism and Process Optimization During Integrated Pulsed-Continuous Laser Cleaning of Q235B Carbon Steel
by Wei Zhang, Chunming Wang, Qiong Wu, Fei Yan, Guoli Zhu and Junqiang Wang
Materials 2025, 18(6), 1247; https://doi.org/10.3390/ma18061247 - 12 Mar 2025
Viewed by 771
Abstract
Laser cleaning has received extensive attention due to its high efficiency, non-pollution and easy automation. However, how to improve the cleaning quality has become the focus of current research. In this paper, we used a pulsed laser for cleaning experiments on Q235B carbon [...] Read more.
Laser cleaning has received extensive attention due to its high efficiency, non-pollution and easy automation. However, how to improve the cleaning quality has become the focus of current research. In this paper, we used a pulsed laser for cleaning experiments on Q235B carbon steel to investigate the effects of different process parameters on the surface cleaning quality. On this basis, a new cleaning method was innovatively proposed to improve the oxide removal efficiency, microstructure, and mechanical properties of cleaned samples. The results showed that pulsed laser cleaning of Q235B carbon steel was the most effective at a laser linewidth of 50 mm, pulsed frequency of 500 kHz, and cleaning speed of 15 mm/s. A great deal of craters formed on the surface of cleaned samples due to the thermal shock of the pulsed laser. Compared with other laser cleaning methods, integrated laser cleaning had an obvious effect in raising the oxide removal efficiency and reducing the surface roughness. The ridge structures on the sample surface also could be successfully eliminated, subsequently achieving smooth structures. Fine-crystalline structures were formed near the surface of tested samples, which significantly decreased the crystal orientation and increased the number of small angle grain boundaries and the GND density. The improvement in hardness was mainly on account of grain refinement in the integrated laser cleaning samples. In addition, a physical model was proposed to illustrate the oxide removal mechanism on integrated pulsed-continuous laser cleaning samples. This research can offer new theoretical and technical support for solving the long-standing problems of efficiency and quality in laser cleaning, thus significantly broadening the application of laser technology in manufacturing fields. Full article
(This article belongs to the Special Issue Laser and Multi-Energy Field Processing of High-Performance Materials)
Show Figures

Figure 1

14 pages, 9593 KiB  
Article
Grain Refinement Caused by Larger Particles in Laser 3D Printing of AISI 304L Stainless Steel
by Xuhuai Zhang and Xing Lu
Materials 2025, 18(6), 1223; https://doi.org/10.3390/ma18061223 - 10 Mar 2025
Viewed by 768
Abstract
Additively manufactured (AM) stainless steel has attracted a lot of attention for its competitive performance advantages over parts prepared by traditional methods. However, the influence of the powder characteristic of AISI 304L stainless steel on the laser 3D printing (3DP) process has yet [...] Read more.
Additively manufactured (AM) stainless steel has attracted a lot of attention for its competitive performance advantages over parts prepared by traditional methods. However, the influence of the powder characteristic of AISI 304L stainless steel on the laser 3D printing (3DP) process has yet to be clarified. In this research, the effect of the particle size of atomized AISI 304L stainless steel powder on 3DP of a powder-fed laser was studied, the grain morphology of different printed samples was analyzed by electron backscatter diffraction (EBSD) technology, and the mechanical properties were investigated via quasi-static tensile experiments. It was found that the use of small particles made the columnar crystal area mix with fine equiaxed grains in single-pass laser melting deposition, resulting in an obvious grain refinement effect. However, in multi-pass deposition, samples deposited with small particles exhibited more significant grain coarsening and anisotropy effects than those of larger particles, resulting in a significant reduction in plasticity. This can be attributed to the grain merging and growth mechanism caused by the thermal shock effect of multi-pass laser deposition, which is controlled by the grain configuration formed in the early-pass deposition. The results show that the use of powder particles greater than 50 μm is of great significance for improving the quality of AISI 304L stainless steel 3DP products. Full article
Show Figures

Figure 1

17 pages, 978 KiB  
Article
Comparison of Short-Term Effects of Extracorporeal Shock Wave Therapy, Low-Level Laser Therapy and Pulsed Electromagnetic Field Therapy in Knee Osteoarthritis: A Randomized Controlled Study
by Tugce Pasin and Bilinc Dogruoz Karatekin
J. Clin. Med. 2025, 14(2), 594; https://doi.org/10.3390/jcm14020594 - 17 Jan 2025
Cited by 1 | Viewed by 2824
Abstract
Background: Knee osteoarthritis (OA) is the most prevalent form of osteoarthritis and a leading cause of chronic pain in adults. This study aimed to compare the short-term effects of extracorporeal shock wave therapy (ESWT), low-level laser therapy (LLLT), and pulsed electromagnetic field therapy [...] Read more.
Background: Knee osteoarthritis (OA) is the most prevalent form of osteoarthritis and a leading cause of chronic pain in adults. This study aimed to compare the short-term effects of extracorporeal shock wave therapy (ESWT), low-level laser therapy (LLLT), and pulsed electromagnetic field therapy (PEMF) on pain, function, and quality of life in patients with knee OA. Methods: A hundred and twenty patients with Kellgren–Lawrence grade 2–3 knee OA were randomized into four groups: ESWT (once a week for three sessions), LLLT (twice a week for eight sessions), PEMF (twice a week for eight sessions), and a control group with 30 patients in each group. All participants were instructed in a daily exercise program, including knee joint range of motion, stretching, and strengthening exercises (3 × 10 repetitions). Outcome measures, including the visual analog scale (VAS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Short Form-36 (SF-36), and the Timed Up and Go (TUG) test, were assessed at baseline after treatment and at the third month. Results: There were no significant differences between groups at baseline regarding VAS, WOMAC, SF-36, and TUG scores (p > 0.05). Significant improvements were observed in all parameters post-treatment for all groups (p < 0.001). However, the improvements in the PEMF group were significantly lower than in the ESWT and LLLT groups, particularly for VAS, WOMAC pain, and SF-36 physical function scores (p < 0.05). No significant differences were found between ESWT and LLLT (p > 0.05). Conclusions: In the short-term, ESWT, LLLT, and PEMF effectively reduce pain, improve physical function, and enhance quality of life in patients with knee OA, though PEMF showed less pronounced improvements. Full article
(This article belongs to the Topic New Advances in Physical Therapy and Occupational Therapy)
Show Figures

Figure 1

17 pages, 10031 KiB  
Article
Crystal and Dislocation Characteristics of Ti-6Al-4V Alloy Under Effect of Laser Shock Peening
by Cheng Gu, Chun Wang, Jianhua Zhao, Yajun Wang and Zenghui Tian
Materials 2025, 18(2), 378; https://doi.org/10.3390/ma18020378 - 15 Jan 2025
Cited by 2 | Viewed by 798
Abstract
Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to [...] Read more.
Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels. The influence of laser power on the microstructure of Ti-6Al-4V was investigated, with a focus on the evolution of the cross-sectional structure, crystallographic features, and dislocation behavior. These characteristics were analyzed using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Following laser shock peening, the surface grains of Ti-6Al-4V alloy exhibited a distinct preferred orientation and underwent significant refinement, resulting in the formation of nanocrystals. At a laser power of 8 J, the texture strength decreased to 5.19 mud. As laser power increased, a denser dislocation structure and high-density dislocation regions formed at the surface, and the subgrain size further decreased, reaching 66 nm at 8 J. These findings provide valuable insights into grain refinement and property enhancement, contributing to the understanding of process–microstructure–property relationships. Full article
Show Figures

Figure 1

22 pages, 8471 KiB  
Article
Metal Powder Production by Atomization of Free-Falling Melt Streams Using Pulsed Gaseous Shock and Detonation Waves
by Sergey M. Frolov, Vladislav S. Ivanov, Viktor S. Aksenov, Igor O. Shamshin, Fedor S. Frolov, Alan E. Zangiev, Tatiana I. Eyvazova, Vera Ya. Popkova, Maksim V. Grishin, Andrey K. Gatin and Tatiana V. Dudareva
J. Manuf. Mater. Process. 2025, 9(1), 20; https://doi.org/10.3390/jmmp9010020 - 10 Jan 2025
Viewed by 1616
Abstract
A new method of producing metal powders for additive manufacturing by the atomization of free-falling melt streams using pulsed cross-flow gaseous shock or detonation waves is proposed. The method allows the control of shock/detonation wave intensity (from Mach number 4 to about 7), [...] Read more.
A new method of producing metal powders for additive manufacturing by the atomization of free-falling melt streams using pulsed cross-flow gaseous shock or detonation waves is proposed. The method allows the control of shock/detonation wave intensity (from Mach number 4 to about 7), as well as the composition and temperature of the detonation products by choosing proper fuels and oxidizers. The method is implemented in laboratory and industrial setups and preliminarily tested for melts of three materials, namely zinc, aluminum alloy AlMg5, and stainless steel AISI 304, possessing significantly different properties in terms of density, surface tension, and viscosity. Pulsed shock and detonation waves used for the atomization of free-falling melt streams are generated by the pulsed detonation gun (PDG) operating on the stoichiometric mixture of liquid hydrocarbon fuel and gaseous oxygen. The analysis of solidified particles and particle size distribution in the powder is studied by sifting on sieves, optical microscopy, laser diffraction wet dispersion method (WDM), and atomic force microscopy (AFM). The operation process is visualized by a video camera. The minimal size of the powders obtained by the method is shown to be as low as 0.1 to 1 μm, while the maximum size of particles exceeds 400–800 μm. The latter is explained by the deficit of energy in the shock-induced cross-flow for the complete atomization of the melt stream, in particular dense and thick (8 mm) streams of the stainless-steel melt. The mass share of particles with a fraction of 0–10 μm can be at least 20%. The shape of the particles of the finest fractions (0–30 and 30–70 μm) is close to spherical (zinc, aluminum) or perfectly spherical (stainless steel). The shape of particles of coarser fractions (70–140 μm and larger) is more irregular. Zinc and aluminum powders contain agglomerates in the form of particles with fine satellites. The content of agglomerates in stainless-steel powders is very low. In general, the preliminary experiments show that the proposed method for the production of finely dispersed metal powders demonstrates potential in terms of powder characteristics. Full article
Show Figures

Figure 1

25 pages, 18900 KiB  
Article
Fabrication of Papillary Composite Microstructured Aluminum Surfaces by Laser Shock Imprinting and Ablation
by Zongbao Shen, Qizhi Xu, Yansong Yu, Dong Liu and Jie Ji
Metals 2024, 14(12), 1346; https://doi.org/10.3390/met14121346 - 26 Nov 2024
Viewed by 817
Abstract
Laser shock ablation is incorporated into laser shock imprinting for the fabrication of papillary composite microstructures on aluminum surfaces. The primary papillary structures are fabricated using laser shock imprinting. Subsequently, secondary structures were fabricated on the surface of these primary structures using laser [...] Read more.
Laser shock ablation is incorporated into laser shock imprinting for the fabrication of papillary composite microstructures on aluminum surfaces. The primary papillary structures are fabricated using laser shock imprinting. Subsequently, secondary structures were fabricated on the surface of these primary structures using laser shock ablation, forming composite papillary microstructures. The influence of various laser shock ablation process parameters on the formation effect of these papillary composite microstructure surfaces was investigated. The results indicate that both laser shock energy and shock frequency affect the integrity of the secondary microstructure coverage on the material surface, the height of the composite microstructure, and the surface morphology. Through comparative optimization, the optimal process parameters were determined to be 675 mJ of energy and one shock ablation. Additionally, the differences in the flow behavior of metallic materials between the center and the periphery of the beam spot, caused by the shock wave, were analyzed. The wettability of the composite microstructure aluminum surface was also explored. The variation mechanism of wettability was explained by detecting changes in the contact angle on the aluminum surface at different time intervals and analyzing changes in surface chemical composition before and after aging. Specifically, after laser shock ablation, the aluminum surface contains a large number of polar groups, making it hydrophilic. During aging treatment, these polar groups continuously adsorb non-polar alkyl organic compounds, eventually leading to hydrophobicity, with a stabilized average surface contact angle of 143°. Fluorination treatment can further achieve superhydrophobicity, with a contact angle of 151° achieved shortly after processing the composite microstructure aluminum surface. Full article
(This article belongs to the Special Issue Advanced Digital Design and Laser Manufacturing in Metallic Materials)
Show Figures

Figure 1

16 pages, 18498 KiB  
Article
Study on Microstructure and Corrosion Fatigue Resistance of 14Cr12Ni3Mo2VN Materials Based on the Composite Technology of High-Frequency Induction Quenching and Laser Shock Peening
by Jiashun Gao, Zhilong Xu, Huiting Lv, Zhiling Yang, Guang Yang and Liehua Liu
Coatings 2024, 14(12), 1484; https://doi.org/10.3390/coatings14121484 - 25 Nov 2024
Viewed by 970
Abstract
This study investigated the microstructure, microhardness, and residual compressive stress of 14Cr12Ni3Mo2VN martensitic stainless steel treated with high-frequency induction quenching (HFIQ) and laser shock peening (LSP). Using rotating bending corrosion fatigue testing, the corrosion fatigue performance was analyzed. Results show that a microstructural [...] Read more.
This study investigated the microstructure, microhardness, and residual compressive stress of 14Cr12Ni3Mo2VN martensitic stainless steel treated with high-frequency induction quenching (HFIQ) and laser shock peening (LSP). Using rotating bending corrosion fatigue testing, the corrosion fatigue performance was analyzed. Results show that a microstructural gradient formed after HFIQ and LSP: the surface layer consisted of nanocrystals, the subsurface layer of short lath martensite, and the core of thick lath martensite. A hardness gradient was introduced, with surface hardness reaching 524 Hv0.1, 163 Hv0.1 higher than the core hardness. A residual compressive stress field was introduced near the surface, with a maximum residual compressive stress of approximately −575 MPa at a depth of 0.1 mm. Corrosion fatigue results indicate that cycle loading times of samples treated with HFIQ and LSP were 2.88, 2.04, and 1.45 times higher than untreated, HFIQ-only, and LSP-only samples, respectively. Transmission electron microscopy (TEM) characterization showed that HFIQ reduced the lath martensite size, while the ultra-high strain rate induced by LSP likely caused dynamic recrystallization, forming numerous sub-boundaries and refining grains, which increased surface hardness. The plastic strain induced by LSP introduced residual compressive stress, counteracting tensile stress and hindering the initiation and propagation of corrosion fatigue cracks. Full article
Show Figures

Figure 1

9 pages, 955 KiB  
Article
Effectiveness of Activated Sodium Hypochlorite Irrigation by Shock Wave-Enhanced Emission Photoacoustic Streaming, Sonic and Ultrasonic Devices in Removing Enterococcus faecalis Biofilm From Root Canal System
by Hadi Assadian, Sadaf Fathollahi, Maryam Pourhajibagher, Luca Solimei, Stefano Benedicenti and Nasim Chiniforush
J. Clin. Med. 2024, 13(20), 6278; https://doi.org/10.3390/jcm13206278 - 21 Oct 2024
Cited by 3 | Viewed by 1771
Abstract
Aim: To compare shock wave-enhanced emission photoacoustic streaming (SWEEPS) with sonic- and ultrasonically activated irrigation systems in removing Enterococcus faecalis biofilm from the root canal system. Methodology: Fifty human single-canalled mandibular premolars were included in the study. After access cavity preparation, the root [...] Read more.
Aim: To compare shock wave-enhanced emission photoacoustic streaming (SWEEPS) with sonic- and ultrasonically activated irrigation systems in removing Enterococcus faecalis biofilm from the root canal system. Methodology: Fifty human single-canalled mandibular premolars were included in the study. After access cavity preparation, the root canals were prepared to a standardized size and taper. Then, the entire root surface was covered with two layers of resin, and the root apices were sealed before sterilization. All root canals were inoculated with E. faecalis biofilm, and the samples were incubated aerobically for 2 weeks at 37 °C. Biofilm formation was confirmed by scanning electron microscopy. All samples were randomly divided into five groups (n = 10 each) based on their irrigation activation method as A (no treatment or negative control), B (no irrigation or positive control), C (sonically activated irrigation (SAI)), D (ultrasonically activated irrigation (UAI)), and E (needle irrigation activated by an Er: YAG laser device using a SWEEPS quartz tip (SWEEPS)). Then, dentine chips were retrieved, vortexed, and diluted for colony-forming unit counts. Data were analysed using analysis of variance and post-hoc Tukey tests (α = 5%). Results: All methods could significantly reduce E. faecalis biofilm compared with control so that the UAI, SWEEPS, and SAI groups indicated a 23.54%, 14.89%, and 7.81% biofilm reduction, respectively. UAI demonstrated a significantly more effective reduction of E. faecalis biofilm than SAI (p = 0.004). Conclusions: All irrigation activation methods significantly reduced E. faecalis biofilm, with ultrasonic use being the most effective. Full article
(This article belongs to the Special Issue Surgical and Non-surgical Endodontics in 2024 and Beyond)
Show Figures

Figure 1

10 pages, 7307 KiB  
Article
Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study
by Gabrijela Kapetanović Petričević, Antonio Perčinić, Ana Budimir, Anja Sesar, Ivica Anić and Ivona Bago
Bioengineering 2024, 11(10), 999; https://doi.org/10.3390/bioengineering11100999 - 4 Oct 2024
Cited by 1 | Viewed by 3744
Abstract
In this in vitro study, we aimed to evaluate and compare the antibacterial efficacy of a novel erbium-doped yttrium aluminum garnet laser modality, shock wave enhanced emission of photoacoustic streaming (SWEEPS), ultrasonically activated irrigation (UAI), and single needle irrigation (SNI) against old bacterial [...] Read more.
In this in vitro study, we aimed to evaluate and compare the antibacterial efficacy of a novel erbium-doped yttrium aluminum garnet laser modality, shock wave enhanced emission of photoacoustic streaming (SWEEPS), ultrasonically activated irrigation (UAI), and single needle irrigation (SNI) against old bacterial biofilm. A two-week-old Enterococcus faecalis biofilm was cultivated on transversal dentinal discs made from the middle third of the roots of single-rooted, single-canal premolars. Biofilm growth was confirmed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The dentine samples were randomly distributed into three experimental groups and one control group based on the irrigation protocol used: Group 1, SWEEPS; Group 2, UAI; and Group 3, SNI. The root canals were irrigated with a 3% sodium hypochlorite solution. Antibacterial efficacy was evaluated quantitatively through bacterial culture and qualitatively through CLSM and SEM. Both SWEEPS and UAI demonstrated a statistically significant reduction in Enterococcus faecalis colony-forming units (CFUs) (p < 0.001), while SNI did not show a statistically significant reduction (p = 0.553). No significant difference was observed between the efficacy of SWEEPS and UAI (p > 0.05). The SWEEPS and UAI techniques were equally effective in eliminating mature E. faecalis biofilm. Full article
(This article belongs to the Special Issue Oral Health and Dental Restoration and Regeneration)
Show Figures

Figure 1

14 pages, 4692 KiB  
Article
Experimental Study of Surface Microtexture Formed by Laser-Induced Cavitation Bubble on 7050 Aluminum Alloy
by Bin Li, Byung-Won Min, Yingxian Ma, Rui Zhou, Hai Gu and Yupeng Cao
Coatings 2024, 14(9), 1230; https://doi.org/10.3390/coatings14091230 - 23 Sep 2024
Viewed by 1358
Abstract
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and [...] Read more.
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and the underwater acoustic signal of evolution was collected by a fiber optic hydrophone system. This combined approach was used to study the effect of the cavitation bubble on 7050 aluminum alloy. The surface morphology of the microtexture was analyzed by a confocal microscope, and the tribological properties of the microtexture were analyzed by a friction testing machine. Then the feasibility of the preparation process was verified and the optimal density was obtained. The study shows that the microtexture on the surface of a sample is formed by the combined results of the plasma shock wave and the collapse shock wave. When the density of microtexture is less than or equal to 19.63%, the diameters of the micropits range from 478 μm to 578 μm, and the depths of the micropits range from 13.56 μm to 18.25 μm. This shows that the laser-induced cavitation bubble is able to form repeatable microtexture. The friction coefficient of the sample with microtexture is lower than that of the untextured sample, with an average friction coefficient of 0.16. This indicates that the microtexture formed by laser-induced cavitation bubble has a good lubrication effect. The sample with a density of 19.63% is uniform and smooth, having the minimum friction coefficient, with an average friction coefficient of 0.14. This paper provides a new approach for microtexture processing of metal materials. Full article
Show Figures

Figure 1

Back to TopTop