Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Preparation of Dentine Discs
2.2. Enterococcus faecalis Biofilm Formation
2.3. Experimental Irrigation Protocols
2.3.1. Group 1: SWEEPS
2.3.2. Group 2: Ultrasonically Activated Irrigation
2.3.3. Group 3: Passive Irrigation (PI)
2.4. Culture Method and Quantification of E. faecalis Colony Forming Units
2.5. Scanning Electron Microscopy Analysis
2.6. Confocal Laser Scanning Microscopy Analysis
2.7. Statistical Analysis
3. Results
3.1. Results of the Culture Method
3.2. Qualitative Results of Scanning Electron Microscopy and Confocal Laser Scanning Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayanan, L.L.; Vaishnavi, C. Endodontic microbiology. J. Conserv. Dent. 2010, 13, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Samaranayake, L.P.; Lolato, A.; Weinstein, T.; Taschieri, S. Analysis of the secondary endodontic lesions focusing on the extraradicular microorganisms: An overview. J. Investig. Clin. Dent. 2014, 5, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Davies, J.K.; Sundqvist, G.; Figdor, D. Mechanisms involved in resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J. 2002, 35, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Kayaoglu, G.; Ørstavik, D. Virulence factors of Enterococcus faecalis: Relationship to endodontic disease. Crit. Rev. Oral Biol. Med. 2004, 15, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F.; Rôças, I.N. Polymerase chain reaction-based analysis of microorganisms associated with failed endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 85–94. [Google Scholar] [CrossRef]
- Sedgley, C.; Nagel, A.; Dahlén, G.; Reit, C.; Molander, A. Real-time quantitative polymerase chain reaction and culture analyses of Enterococcus faecalis in root canals. J. Endod. 2006, 32, 173–177. [Google Scholar] [CrossRef]
- Torabinejad, M.; Corr, R.; Handysides, R.; Shabahang, S. Outcomes of non-surgical retreatment and endodontic surgery: A systematic review. J. Endod. 2009, 35, 930–937. [Google Scholar] [CrossRef]
- Zandi, H.; Petronijevic, N.; Mdala, I.; Kristoffersen, A.K.; Enersen, M.; Rôças, I.N.; Siqueira, J.F., Jr.; Ørstavik, D. Outcome of endodontic retreatment using 2 root canal irrigants and influence of infection on healing as determined by a molecular method: A randomized clinical trial. J. Endod. 2019, 45, 1089–1098.e5. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in Endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef]
- Kumar, K.; Teoh, Y.Y.; Walsh, L.J. Root canal cleaning in roots with complex canals using agitated irrigation fluids. Aust. Endod. J. 2023, 49, 56–65. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, M.W.; Zhu, L.X.; Peng, B. Micro-CT study on the removal of accumulated hard-tissue debris from the root canal system of mandibular molars when using a novel laser-activated irrigation approach. Int. Endod. J. 2020, 53, 529–538. [Google Scholar] [CrossRef]
- Wong, D.T.S.; Cheung, G.S.P. Extension of the bactericidal effect of sodium hypochlorite into the dentinal tubules. J. Endod. 2014, 40, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Van Der Sluis, L.W.M.; Vogels, M.P.J.M.; Verhaagen, B.; Macedo, R.; Wesselink, P.R. Study on the influence of refreshment/activation cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant. J. Endod. 2010, 36, 737–740. [Google Scholar] [CrossRef] [PubMed]
- DiVito, E.; Peters, O.A.; Olivi, G. Effectiveness of the erbium: YAG laser and new radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med. Sci. 2012, 27, 273–280. [Google Scholar] [CrossRef]
- Cheng, X.; Xiang, D.; He, W.; Qiu, J.; Han, B.; Yu, Q.; Tian, Y. Bactericidal effect of Er: YAG laser-activated sodium hypochlorite irrigation against biofilms of Enterococcus faecalis isolated from the canal of root-filled teeth with periapical lesions. Photomed. Laser Surg. 2017, 35, 386–392. [Google Scholar] [CrossRef]
- Betancourt, P.; Merlos, A.; Sierra, J.M.; Camps-Font, O.; Arnabat-Domínguez, J.; Viñas, M. Effectiveness of low concentration of sodium hypochlorite activated by Er,Cr:YSGG laser against Enterococcus faecalis biofilm. Lasers Med. Sci. 2019, 34, 247–254. [Google Scholar] [CrossRef]
- Swimberghe, R.C.D.; Tzourmanas, R.; De Moor, R.J.G.; Braeckmans, K.; Coenye, T.; Meire, M.A. Explaining the working mechanism of laser-activated irrigation and its action on microbial biofilms: A high-speed imaging study. Int. Endod. J. 2022, 55, 1372–1384. [Google Scholar] [CrossRef]
- Lukač, N.; Jezeršek, M. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses. Lasers Med. Sci. 2018, 33, 823–833. [Google Scholar] [CrossRef]
- Jezeršek, M.; Lukač, N.; Lukač, M.; Tenyi, A.; Olivi, G.; Fidler, A. Measurement of pressures generated in root canal during Er:YAG laser-activated irrigation. Photobiomodul. Photomed. Laser Surg. 2020, 38, 625–631. [Google Scholar] [CrossRef]
- Petričević, G.K.; Katić, M.; Anić, I.; Salarić, I.; Vražić, D.; Bago, I. Efficacy of different Er:YAG laser-activated photoacoustic streaming modes compared to passive ultrasonic irrigation in the retreatment of curved root canals. Clin. Oral Investig. 2022, 26, 6773–6781. [Google Scholar] [CrossRef] [PubMed]
- Kapetanović Petričević, G.; Katić, M.; Brzović Rajić, V.; Anić, I.; Bago, I. The efficacy of Er:YAG laser-activated shock wave-enhanced emission photoacoustic streaming compared to ultrasonically activated irrigation and needle irrigation in the removal of bioceramic filling remnants from oval root canals-an ex vivo study. Bioengineering 2022, 9, 820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shahi Ardakani, A.; Afrasiabi, S.; Sarraf, P.; Benedicenti, S.; Solimei, L.; Chiniforush, N. In vitro assessment of SWEEPS and antimicrobial photodynamic therapy alone or in combination for eradicating Enterococcus faecalis biofilm in root canals. Pharmaceutics 2023, 15, 2628. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, F.; Fazlyab, M.; Chiniforush, N.; Akhavan, H. Comparative effects of SWEEPS technique and antimicrobial photodynamic therapy by using curcumin and nano-curcumin on Enterococcus faecalis biofilm in root canal treatment. Photodiagn. Photodyn. Ther. 2022, 40, 103130. [Google Scholar] [CrossRef] [PubMed]
- Akdere, S.K.; Aydin, Z.U.; Erdönmez, D. Antimicrobial effectiveness of different irrigation activation techniques on teeth with artificial internal root resorption and contaminated with Enterococcus faecalis: A confocal laser scanning,icroscopy analysis. Lasers Med. Sci. 2023, 38, 89. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, L.; Delattre, J.; Meire, M. Isthmus morphology influences debridement efficacy of activated irrigation: A laboratory study involving biofilm mimicking hydrogel removal and high-speed imaging. Int. Endod. J. 2023, 56, 118–127. [Google Scholar] [CrossRef]
- De Meyer, S.; Meire, M.A.; Coenye, T.; De Moor, R.J. Effect of laser-activated irrigation on biofilms in artificial root canals. Int. Endod. J. 2017, 50, 472–479. [Google Scholar] [CrossRef]
- Meire, M.; De Moor, R.J.G. Principle and antimicrobial efficacy of laser-activated irrigation: A narrative review. Int. Endod. J. 2024, 57, 841–860. [Google Scholar] [CrossRef]
- Bago, I.; Batelja-Vuletić, L.; Tarle, A.; Sesar, A.; Anić, I. Novel laser activated photoacoustic streaming for removing pulp remnants from round root canals after single file reciprocating instrumentation. Photodiagn. Photodyn. Ther. 2022, 37, 102631. [Google Scholar] [CrossRef]
- Vatanpour, M.; Toursavadkouhi, S.; Sajjad, S. Comparison of three irrigation methods: SWEEPS, ultrasonic, and traditional irrigation, in smear layer and debris removal abilities in the root canal, beyond the fractured instrument. Photodiagn. Photodyn. Ther. 2022, 37, 102707. [Google Scholar] [CrossRef]
- Lei, L.; Wang, F.; Wang, Y.; Li, Y.; Huang, X. Laser activated irrigation with SWEEPS modality reduces concentration of sodium hypochlorite in root canal irrigation. Photodiagn. Photodyn. Ther. 2022, 39, 102873. [Google Scholar] [CrossRef]
- Mattern, R.; Ernst, S.; Böcher, S.; Braun, A.; Wenzler, J.S.; Conrads, G. CLSM-guided imaging for quantifying endodontic disinfection. Antibiotics 2024, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Liu, H.; Yang, L.; Zhang, L.; Yang, L.; Xiao, N.; Shen, J.; Deng, J.; Shen, Y. In vitro efficacy of Er:YAG laser-activated irrigation versus passive ultrasonic irrigation and sonic-powered irrigation for treating multispecies biofilms in artificial grooves and dentinal tubules: A SEM and CLSM study. BMC Oral Health 2024, 24, 261. [Google Scholar] [CrossRef] [PubMed]
- Lukac, N.; Muc, B.; Jezeršek, M.; Lukac, M. Photoacoustic endodontics using the novel SWEEPS Er:YAG laser modality. J. Laser Health Acad. 2017, 2017, 1–7. [Google Scholar]
Minimum | Maximum | Percentile 25 | Median | Percentile 75 | |||
---|---|---|---|---|---|---|---|
Number of CFUs | SWEEPS | Control | 5 × 1012 | 3.5 × 1013 | 5 × 1012 | 1 × 1013 | 1.5 × 1013 |
Experimental group | 0 | 5 × 104 | 0 | 0 | 0 | ||
UAI | Control | 2 × 1013 | 1 × 1014 | 2.5 × 1013 | 7 × 1013 | 7.5 × 1013 | |
Experimental group | 5 × 105 | 2 × 109 | 5 × 106 | 5 × 106 | 5 × 108 | ||
PI | Control | 5 × 107 | 2.5 × 1013 | 5 × 108 | 5 × 108 | 1 × 1010 | |
Experimental group | 1 × 105 | 2.5 × 1013 | 5 × 106 | 5 × 108 | 5 × 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petričević, G.K.; Perčinić, A.; Budimir, A.; Sesar, A.; Anić, I.; Bago, I. Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study. Bioengineering 2024, 11, 999. https://doi.org/10.3390/bioengineering11100999
Petričević GK, Perčinić A, Budimir A, Sesar A, Anić I, Bago I. Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study. Bioengineering. 2024; 11(10):999. https://doi.org/10.3390/bioengineering11100999
Chicago/Turabian StylePetričević, Gabrijela Kapetanović, Antonio Perčinić, Ana Budimir, Anja Sesar, Ivica Anić, and Ivona Bago. 2024. "Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study" Bioengineering 11, no. 10: 999. https://doi.org/10.3390/bioengineering11100999
APA StylePetričević, G. K., Perčinić, A., Budimir, A., Sesar, A., Anić, I., & Bago, I. (2024). Comparison of a Novel Modality of Erbium-Doped Yttrium Aluminum Garnet Laser-Activated Irrigation and Ultrasonic Irrigation against Mature Enterococcus faecalis Biofilm—An In Vitro Study. Bioengineering, 11(10), 999. https://doi.org/10.3390/bioengineering11100999