Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = label-free LC–MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1392 KiB  
Brief Report
Determination of the Epitopes of Alpha-Glucosidase Anti-Drug Antibodies in Pompe Disease Patient Plasma Samples
by Evgeniy V. Petrotchenko, Andreas Hahn and Christoph H. Borchers
Antibodies 2025, 14(3), 64; https://doi.org/10.3390/antib14030064 - 28 Jul 2025
Viewed by 183
Abstract
Pompe disease is a rare autosomal-recessive neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to the pathological accumulation of glycogen and impaired autophagy. Enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) has been available since 2006, [...] Read more.
Pompe disease is a rare autosomal-recessive neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to the pathological accumulation of glycogen and impaired autophagy. Enzyme replacement therapy (ERT) with recombinant human alpha-glucosidase (rhGAA) has been available since 2006, but may lead to the formation of anti-drug antibodies (ADAs) against the recombinant human enzyme, which, in turn, may adversely affect the response to ERT. Knowledge of the antigenic determinants of rhGAA involved in interaction with ADAs may facilitate the development of strategies to attenuate the anti-drug immune response in patients. Here, we determined the rhGAA ADA epitopes in the plasma of Pompe disease patients using a series of affinity purifications combined with epitope extraction and label free quantitation LC-MS. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Graphical abstract

21 pages, 17488 KiB  
Article
Mechanistic Study on the Inhibitory Effect of Dandelion Extract on Breast Cancer Cell Proliferation and Its Induction of Apoptosis
by Weifeng Mou, Ping Zhang, Yu Cui, Doudou Yang, Guanjie Zhao, Haijun Xu, Dandan Zhang and Yinku Liang
Biology 2025, 14(8), 910; https://doi.org/10.3390/biology14080910 - 22 Jul 2025
Viewed by 633
Abstract
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different [...] Read more.
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different polarities. MTT assays revealed that the ethyl acetate fraction exhibited the strongest inhibitory effect on cell proliferation. LC-MS analysis identified 12 potential active compounds, including sesquiterpenes such as Isoalantolactone and Artemisinin, which showed significantly lower toxicity toward normal mammary epithelial MCF-10A cells compared to tumor cells (p < 0.01). Mechanistic studies demonstrated that the extract induced apoptosis in a dose-dependent manner, with an apoptosis rate as high as 85.04%, and significantly arrested the cell cycle at the S and G2/M phases. Label-free quantitative proteomics identified 137 differentially expressed proteins (|FC| > 2, p < 0.05). GO enrichment analysis indicated that these proteins were mainly involved in cell cycle regulation and apoptosis. KEGG pathway analysis revealed that the antitumor effects were primarily mediated through the regulation of PI3K-Akt (hsa04151), JAK-STAT (hsa04630), and PPAR (hsa03320) signaling pathways. Moreover, differential proteins such as PI3K, AKT1S1, SIRT6, JAK1, SCD, STAT3, CASP8, STAT2, STAT6, and PAK1 showed strong correlation with the core components of the EA-2 fraction of dandelion. Molecular docking results demonstrated that these active compounds exhibited strong binding affinities with key target proteins such as PI3K and JAK1 (binding energy < −5.0 kcal/mol). This study elucidates the multi-target, multi-pathway synergistic mechanisms by which dandelion extract inhibits breast cancer, providing a theoretical basis for the development of novel antitumor agents. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

17 pages, 2959 KiB  
Article
[Pd(dach)Cl2] Complex Targets Proteins Involved in Ribosomal Biogenesis, and RNA Splicing in HeLa Cells
by Vanja Ralić, Katarina Davalieva, Branislava Gemović, Milan Senćanski, Maja D. Nešić, Jelena Žakula, Milutin Stepić and Marijana Petković
Inorganics 2025, 13(7), 215; https://doi.org/10.3390/inorganics13070215 - 26 Jun 2025
Viewed by 444
Abstract
This study aims to investigate the effect of the Pd(II) complex on HeLa cells using computational biology and proteomic analysis. [Pd(dach)Cl2]-treated HeLa cells were subjected to comparative proteomics analysis using label-free data-independent liquid chromatography-tandem mass spectrometry (LC-MS/MS). In parallel, [...] Read more.
This study aims to investigate the effect of the Pd(II) complex on HeLa cells using computational biology and proteomic analysis. [Pd(dach)Cl2]-treated HeLa cells were subjected to comparative proteomics analysis using label-free data-independent liquid chromatography-tandem mass spectrometry (LC-MS/MS). In parallel, the informational spectrum method (ISM) was used to predict potential protein interactors of the [Pd(dach)Cl2] complex in HeLa cells. Proteomics analysis revealed 121 differentially abundant proteins (DAPs). Enrichment analysis of Gene Ontology (GO) annotations revealed ATP hydrolysis and RNA/protein binding as the top molecular functions and RNA splicing and protein–RNA complex organization as the top biological processes. Enrichment analysis of altered canonical pathways pointed out spliceosome and ribosome pathways. The top hub proteins with potential regulatory importance encompassed ribosomal proteins, translational and transcriptional factors, and components of the ribosome assembly machinery. ISM and cross-spectral analysis identified the nucleoplasm and sensor of the single-stranded DNA (SOSS DNA) complex. Proteome analysis showed that [Pd(dach)Cl2] targets proteins involved in ribosomal biogenesis and RNA splicing, whereas theoretical prediction implies also potential effect on p53 signaling pathway, and thus, alterations of the expression of regulatory proteins involved in cell survival and proliferation. These findings underscore the potential of Pd(II) complexes as anti-cancer agents, warranting further exploration and detailed functional validation. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Graphical abstract

19 pages, 3312 KiB  
Article
Integrated Plasma and Tumor Proteomics of Nasopharyngeal Carcinoma in a Moroccan Cohort
by Ayman Reffai, Michelle Hori, Ravali Adusumilli, Abel Bermudez, Houssam Haddad, Nezha Tawfiq, Sharon Pitteri, Mohcine Bennani Mechita and Parag Mallick
Int. J. Mol. Sci. 2025, 26(12), 5771; https://doi.org/10.3390/ijms26125771 - 16 Jun 2025
Viewed by 504
Abstract
Nasopharyngeal carcinoma (NPC) is a multifactorial disease mainly affecting the Southeast Asian and North African populations. Critically, there is a dearth of available circulating biomarkers for NPC. Additionally, as of this writing, there have been no prior plasma proteomics studies on NPC in [...] Read more.
Nasopharyngeal carcinoma (NPC) is a multifactorial disease mainly affecting the Southeast Asian and North African populations. Critically, there is a dearth of available circulating biomarkers for NPC. Additionally, as of this writing, there have been no prior plasma proteomics studies on NPC in the Moroccan population. Accordingly, there has been no integrated analysis of tumor and plasma for NPC in the Moroccan sub-population. Label-free proteomics analysis was conducted on 25 samples of Moroccan origin (10 NPC samples and 15 healthy control samples). Each sample was depleted of albumin, fractionated into eight fractions, and then analyzed using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). A total of 291 proteins and 2702 unique peptides were identified across all samples. In total, 16 proteins were differentially expressed (DEPs) between NPC cases and healthy individuals. Of these, three showed prognostic significance, while four demonstrated diagnostic potential. A pathway analysis showed significantly enriched terms related to the immune response and chronic inflammation, revealing acute-phase proteins as differentially expressed. The investigation of patients with early and advanced stages of NPC revealed two DEPs, while four additional DEPs were identified across the three defined clusters of NPC. Across all comparisons, DEPs, such as H2A, IGHG2, SERPINA3, SAA1, CRP, PIGR, and APOA2, have shown potential as biomarkers for NPC, with several being identified for the first time. We additionally compared the plasma proteomic profile of NPC with the tumor proteomic profile, highlighting that deeper proteomics analysis of plasma may be required to quantify additional putative biomarkers that may be shed from the tumor into the blood. Our research presents the first plasma proteomic profile of NPC in Morocco and North Africa, identifying proteins that might ultimately have diagnostic and prognostic potential. Full article
(This article belongs to the Special Issue Genomics and Proteomics of Cancer)
Show Figures

Figure 1

14 pages, 870 KiB  
Article
A Label-Free Liquid Chromatography–Tandem Mass Spectrometry Method for the Quantitative Analysis of Exosome Pharmacokinetics In Vivo
by Bingxuan Li and Fei Yu
Pharmaceutics 2025, 17(6), 699; https://doi.org/10.3390/pharmaceutics17060699 - 27 May 2025
Viewed by 517
Abstract
Background: Exosomes are nanoscale extracellular vesicles actively secreted by cells that play critical roles in disease biomarker discovery, drug delivery, and direct therapeutic applications. However, in vivo pharmacokinetic (PK) studies of exosomes remain limited, hindering their clinical translation. Due to their complex and [...] Read more.
Background: Exosomes are nanoscale extracellular vesicles actively secreted by cells that play critical roles in disease biomarker discovery, drug delivery, and direct therapeutic applications. However, in vivo pharmacokinetic (PK) studies of exosomes remain limited, hindering their clinical translation. Due to their complex and heterogeneous composition, most existing PK methods rely on chemical or genetic labeling, which may alter their native behavior and complicate accurate analysis. Methods: To address this challenge, we developed a label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS) method to investigate the PK of naive exosome-based therapeutic modalities. Exosomes were isolated from rat plasma using size exclusion chromatography (SEC) and quantified using multiple reaction monitoring (MRM) targeting specific exosomal peptides as surrogate analytes. Following intravenous administration of exosomes via the tail vein, plasma concentrations were determined by peptide peak areas, and PK parameters were calculated using a non-compartmental model. Results: The method was rigorously validated for specificity, linearity, sensitivity, and reproducibility. Its feasibility was further confirmed by successfully characterizing the PK profile of HEK 293F-derived exosomes in rats. Conclusions: This analytical strategy enables direct, label-free quantification of exosomes in plasma and provides a robust platform for advancing exosome-based drug development and translational research. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

16 pages, 1645 KiB  
Review
Proteomic Strategies on the Management of Phytopathogenic Fungi
by Aldrey Nathália Ribeiro Corrêa, Ana Carolina Ritter and Adriano Brandelli
J. Fungi 2025, 11(4), 306; https://doi.org/10.3390/jof11040306 - 11 Apr 2025
Viewed by 736
Abstract
Phytopathogenic fungi are important causative agents of many plant diseases, resulting in substantial economic losses in agriculture. Proteomics has become one of the most relevant high-throughput technologies, and current advances in proteomic methodologies have been helpful in obtaining massive biological information about several [...] Read more.
Phytopathogenic fungi are important causative agents of many plant diseases, resulting in substantial economic losses in agriculture. Proteomics has become one of the most relevant high-throughput technologies, and current advances in proteomic methodologies have been helpful in obtaining massive biological information about several organisms. This review outlines recent advances in mass spectrometry-based proteomics applied to the study of phytopathogenic fungi, including analytical platforms such as LC-MS/MS and MALDI-TOF, as well as quantitative strategies including TMT, iTRAQ, and label-free quantification. Key findings are presented from studies exploring infection-related protein expression, virulence-associated factors, post-translational modifications, and fungal adaptation to chemical fungicides, antimicrobial peptides, and biological control agents. Proteomic analyses have also elucidated mechanisms of resistance, oxidative stress response, and metabolic disruption following exposure to natural products, including essential oils and volatile organic compounds. The proteomic approach enables a comprehensive understanding of fungal biology by identifying proteins related to pathogenicity, stress adaptation, and antifungal resistance, while also facilitating the discovery of molecular targets and natural compounds for the development of sustainable antifungal strategies that reduce risks to human health and the environment. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

12 pages, 895 KiB  
Article
Changes in Protein Expression in Warmed Human Lens Epithelium Cells Using Shotgun Proteomics
by Hiroko Otake, Tetsushi Yamamoto, Naoki Yamamoto, Yosuke Nakazawa, Yoshiki Miyata, Atsushi Taga, Hiroshi Sasaki and Noriaki Nagai
Medicina 2025, 61(2), 286; https://doi.org/10.3390/medicina61020286 - 7 Feb 2025
Viewed by 783
Abstract
Background and Objectives: In previous studies, we reported that the assessment of the cumulative thermal dose in the crystalline lens, conducted through computational modeling utilizing a supercomputer and the biothermal transport equation, exhibited a significant association with the incidence of nuclear cataracts. [...] Read more.
Background and Objectives: In previous studies, we reported that the assessment of the cumulative thermal dose in the crystalline lens, conducted through computational modeling utilizing a supercomputer and the biothermal transport equation, exhibited a significant association with the incidence of nuclear cataracts. In this study, we have investigated the types of proteins that expressed underlying 35.0 °C (normal-temp) and 37.5 °C (warming-temp) by using the shotgun liquid chromatography (LC) with tandem mass spectrometry (MS/MS)-based global proteomic approach. Materials and Methods: We have discussed the changes in protein expression in warmed iHLEC-NY2 cells using Gene Ontology analysis and a label-free semiquantitative method based on spectral counting. Results: In iHLEC-NY2, 615 proteins were detected, including 307 (49.9%) present in both lenses cultured at normal-temp and warming-temp, 130 (21.1%) unique to the lens cultured at normal-temp, and 178 (29.0%) unique to the lens cultured at warming-temp. Furthermore, LC–MS/MS analysis showed that warming decreased the expression of actin, alpha cardiac muscle 1, actin-related protein 2, putative tubulin-like protein alpha-4B, ubiquitin carboxyl-terminal hydrolase 17-like protein 1, ubiquitin-ribosomal protein eL40 fusion protein, ribosome biogenesis protein BMS1 homolog, histone H2B type 1-M, and histone H2A.J. in iHLEC-NY2. Conclusions: The decreases in the specific protein levels of actin, tubulin, ubiquitin, ribosomes, and histones may be related to cataract development under warming conditions. This investigation could provide a critical framework for understanding the correlation between temperature dynamics and the development of nuclear cataracts. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

22 pages, 2203 KiB  
Article
Proteomic Profiling of Extracellular Vesicles in Inflammatory Bowel Diseases
by Montse Baldán-Martín, Mikel Azkargorta, Ainhoa Lapitz, Lorena Ortega Moreno, Ibon Iloro, Samuel Fernández-Tomé, Ander Arbelaiz, Iraide Escobes, Alicia C. Marín, David Bernardo, Luis Bujanda, Jesús M. Bañales, Felix Elortza, Javier P. Gisbert and María Chaparro
Int. J. Mol. Sci. 2025, 26(2), 526; https://doi.org/10.3390/ijms26020526 - 9 Jan 2025
Viewed by 1280
Abstract
The proteomic analysis of serum extracellular vesicles (EVs) could be a useful tool for studying the pathophysiology of Crohn’s disease (CD) and ulcerative colitis (UC), as well as for biomarker discovery. To characterize the proteomic composition of serum EVs in patients with CD [...] Read more.
The proteomic analysis of serum extracellular vesicles (EVs) could be a useful tool for studying the pathophysiology of Crohn’s disease (CD) and ulcerative colitis (UC), as well as for biomarker discovery. To characterize the proteomic composition of serum EVs in patients with CD and UC to identify biomarkers and molecular pathways associated with pathogenesis and activity. Methods: Serum EVs were enriched and analyzed in patients with quiescent CD, active CD (aCD), quiescent UC, active UC (aUC), and healthy controls (HCs) (n = 30 per group). All groups were matched for age and sex. Disease activity was assessed by ileocolonoscopy and categorized based on the SES-CD (CD) and the endoscopic sub-score of the Mayo Score (UC). EVs were enriched by ul-tracentrifugation, and their size and concentration were determined by nanoparticle tracking analysis. The expression of CD63, CD81, and CD9 was determined using West-ern blotting. Proteomic analysis was performed by label-free nano-LC MS/MS. A total of 324 proteins were identified; 60 showed differential abundance in CD-HC, 34 in UC-HC, and 21 in CD-UC. Regarding disease activity, the abundance of 58 and 32 proteins was altered in aCD-HC and aUC-HC, respectively. Functional analyses revealed that proteins associated with aCD were involved in immune regulation, whereas those linked to aUC were enriched in oxidative stress. We have identified expressed proteins between EVs from patients with CD and UC, depending on the presence of disease, the disease type, and the disease activity. These proteins are potential candidates as disease biomarkers and open new research avenues to better understand these conditions. Full article
(This article belongs to the Special Issue Inflammatory Bowel Diseases: Molecular Mechanism and Therapeutics)
Show Figures

Figure 1

22 pages, 12201 KiB  
Article
Identification of Protein Networks and Biological Pathways Driving the Progression of Atherosclerosis in Human Carotid Arteries Through Mass Spectrometry-Based Proteomics
by Gergő Kalló, Khadiza Zaman, László Potor, Zoltán Hendrik, Gábor Méhes, Csaba Tóth, Péter Gergely, József Tőzsér, György Balla, József Balla, Laszlo Prokai and Éva Csősz
Int. J. Mol. Sci. 2024, 25(24), 13665; https://doi.org/10.3390/ijms252413665 - 20 Dec 2024
Viewed by 1465
Abstract
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples [...] Read more.
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed. The proteins isolated from the carotid artery samples were analyzed by a bottom-up shotgun approach that relied on nanoflow liquid chromatography–tandem mass spectrometry analyses (LC–MS/MS) using both data-dependent (DDA) and data-independent (DIA) acquisitions. The data obtained by high-resolution DIA analyses displayed a stronger distinction among groups compared to DDA analyses. Differentially expressed proteins were further examined using Ingenuity Pathway Analysis® with focus on pathological and molecular processes driving atherosclerosis. From the more than 150 significantly regulated canonical pathways, atherosclerosis signaling and neutrophil extracellular trap signaling were verified by protein-targeted data extraction. The results of our study are expected to facilitate a better understanding of the disease progression’s molecular drivers and provide inspiration for further multiomics and hypothesis-driven studies. Full article
(This article belongs to the Special Issue High Resolution Mass Spectrometry in Molecular Sciences: 2nd Edition)
Show Figures

Graphical abstract

24 pages, 3618 KiB  
Article
Proteomic Profiling of Pre- and Post-Surgery Saliva of Glioblastoma Patients: A Pilot Investigation
by Alexandra Muntiu, Fabiana Moresi, Federica Vincenzoni, Diana Valeria Rossetti, Federica Iavarone, Irene Messana, Massimo Castagnola, Giuseppe La Rocca, Edoardo Mazzucchi, Alessandro Olivi, Andrea Urbani, Giovanni Sabatino and Claudia Desiderio
Int. J. Mol. Sci. 2024, 25(23), 12984; https://doi.org/10.3390/ijms252312984 - 3 Dec 2024
Cited by 2 | Viewed by 1522
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the [...] Read more.
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the molecular profile of pre- and post-operative saliva pools from newly diagnosed (ND) GBM patients by comparing different times of collection and tumor recurrence (R). CYCS, PRDX2, RAB1C, PSMB1, KLK6, TMOD3, PAI2, PLBD1, CAST, and AHNAK, all involved in processes of tumor invasiveness and chemo- and radio-resistance, were found to depict the pre-surgery saliva of both ND and R GBM. PADI4 and CRYAB proteins, identified among the most abundant proteins exclusive of ND GBM pre-surgery saliva and classified as proteins elevated in glioma, could have a potential role as disease biomarkers. Selected panels of S100 proteins were found to potentially differentiate ND from R GBM patient saliva. TPD52 and IGKV3, exclusively identified in R GBM saliva, could be additionally distinctive of tumor relapse. Among the proteins identified in all pools, label-free relative quantitation showed statistically significant different levels of TXN, SERPINB5, FABP5, and S100A11 proteins between the pools. All of these proteins showed higher levels in both ND_ and R_T0 pre-surgery saliva with respect to CTRL and different modulation after surgery or chemo-radiotherapy combined treatment, suggesting a role as a potential panel of GBM predictive and prognostic biomarkers. These results highlight and confirm that saliva, a biofluid featured for an easily accessible and low invasiveness collection, is a promising source of GBM biomarkers, showing new potential opportunities for the development of targeted therapies and diagnostic tools. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 10722 KiB  
Article
Quantitative Analysis of Deer Bone Hydroethanolic Extract Using Label-Free Proteomics: Investigating Its Safety and Promoting Effect on Mouse Embryonic Osteoblastic Progenitor Cell Proliferation
by Yanlu Li, Junxia Ma, Yingshan Jiang, Yanchao Xing, Zhongmei He, Weijia Chen, Yan Zhao, Jianan Geng, Ying Zong and Rui Du
Nutrients 2024, 16(22), 3807; https://doi.org/10.3390/nu16223807 - 6 Nov 2024
Cited by 1 | Viewed by 1331
Abstract
Background: Deer bone is rich in proteins and free amino acids, offering high nutritional value and benefits such as strengthening bones and antioxidant properties. However, the development and utilization of deer bone resources are limited, and the safety evaluation of health foods is [...] Read more.
Background: Deer bone is rich in proteins and free amino acids, offering high nutritional value and benefits such as strengthening bones and antioxidant properties. However, the development and utilization of deer bone resources are limited, and the safety evaluation of health foods is incomplete. Methods: We established a hydrogen ethanol extraction method for deer bone and analyzed the components of the deer bone hydroethanolic extract (DBHE) using liquid chromatography–tandem mass spectrometry (LC-MS/MS), gas chromatography–mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Results: Using Label-free proteomics technology, we identified 69 proteins and 181 peptides. We also quantified 16 amino acids, 22 fatty acids, and 17 inorganic elements. Finally, we evaluated the safety of DBHE both in vitro and in vivo. The results indicated that DBHE did not exhibit any toxic effects at the doses we tested and can promote the proliferation of mouse embryonic osteoblastic progenitor cells (MC3T3-E1), demonstrating potential efficacy against osteoporosis and arthritis. Conclusions: This study provides a theoretical basis for the quality control, processing, and resource development of deer bone. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

18 pages, 6262 KiB  
Article
Label-Free Quantitative Proteomics Analysis of Nasal Lavage Fluid in Chronic Rhinosinusitis with Nasal Polyposis
by Musallam Kashoob, Afshan Masood, Assim A. Alfadda, Salini Scaria Joy, Wed Alluhaim, Shahid Nawaz, Mashal Abaalkhail, Omar Alotaibi, Saad Alsaleh and Hicham Benabdelkamel
Biology 2024, 13(11), 887; https://doi.org/10.3390/biology13110887 - 30 Oct 2024
Cited by 1 | Viewed by 1693
Abstract
(1) Background: Chronic rhinosinusitis (CRS) is a common chronic inflammation of the nasal mucosa and the paranasal sinuses. The pathogenesis of chronic rhinosinusitis (CRS) is multifactorial and, as of yet, not well understood. (2) Methods: Nasal lavage fluid samples were collected from patients [...] Read more.
(1) Background: Chronic rhinosinusitis (CRS) is a common chronic inflammation of the nasal mucosa and the paranasal sinuses. The pathogenesis of chronic rhinosinusitis (CRS) is multifactorial and, as of yet, not well understood. (2) Methods: Nasal lavage fluid samples were collected from patients diagnosed with chronic sinusitis with nasal polyposis (CRSwNP) (n = 10) and individuals without sinusitis (control group) (n = 10) who had no nasal complaints. In the present study, we used an untargeted label-free LC-MS/MS mass spectrometric approach combined with bioinformatics and network pathway analysis to compare the changes in the proteomic profiles of the CRSwNP group and the control group. Data from LC-MS/MS underwent univariate and multivariate analyses. (3) Results: The proteomic analyses revealed distinct differences in the abundances of nasal lavage fluid proteins between the CRSwNP and control groups: a total of 234 proteins, 151 up- and 83 down-regulated in CRSwNP. Functional Gene Ontology (GO) analysis showed that dysregulated proteins were involved in airway inflammatory reaction, immune response, and oxidative stress. The biomarkers were evaluated using the Receiver Operating Characteristic (ROC) curve; an Area Under the Curve (AUC) of 0.999 (95% CI) identified potential biomarkers between the CRSwNP and control group. EMILIN-3 and RAB11-binding protein RELCH were down-regulated, and Macrophage migration inhibitory factor and deoxyribonuclease-1 were up-regulated, in CRSwNP compared to the control group. (4) Conclusions: These differentially expressed proteins identified in CRSwNP are involved in airway inflammatory reaction, immune response, and oxidative stress. In particular, the identification of increased interleukin-36 gamma (IL-36γ), which contributes to inflammatory response, and a decrease in SOD, in this group are notable findings. In the future, several of these proteins may prove useful for exploring the pathogenesis of nasal polyps and chronic sinusitis or as objective biomarkers for quantitatively monitoring disease progression or response to therapy. Full article
(This article belongs to the Special Issue Proteomics and Human Diseases)
Show Figures

Figure 1

17 pages, 7106 KiB  
Article
Effect of pH-Shift Treatment on IgE-Binding Capacity and Conformational Structures of Peanut Protein
by Qin Geng, Wenlong Zhou, Ying Zhang, Zhihua Wu and Hongbing Chen
Foods 2024, 13(21), 3467; https://doi.org/10.3390/foods13213467 - 29 Oct 2024
Cited by 1 | Viewed by 1287
Abstract
Hypoallergenic processing is an area worthy of continued exploration. In the treatment of the peanut protein (PP), pH shift was applied by acidic (pH 1.0–4.0) and alkaline (pH 9.0–12.0) treatment, after which the pH was adjusted to 7.0. Following pH-shift treatment, PP showed [...] Read more.
Hypoallergenic processing is an area worthy of continued exploration. In the treatment of the peanut protein (PP), pH shift was applied by acidic (pH 1.0–4.0) and alkaline (pH 9.0–12.0) treatment, after which the pH was adjusted to 7.0. Following pH-shift treatment, PP showed a larger particle size than in neutral solutions. SDS-PAGE, CD analysis, intrinsic fluorescence, UV spectra, and surface hydrophobicity indicated the protein conformation was unfolded with the exposure of more buried hydrophobic residues. Additionally, the IgE-binding capacity of PP decreased after pH-shift treatment on both sides. Label-free LC–MS/MS results demonstrated that the pH-shift treatment induced the structural changes on allergens, which altered the abundance of peptides after tryptic digestion. Less linear IgE-binding epitopes were detected in PP with pH-shift treatment. Our results suggested the pH-shift treatment is a promising alternative approach in the peanut hypoallergenic processing. This study also provides a theoretical basis for the development of hypoallergenic food processing. Full article
Show Figures

Graphical abstract

21 pages, 5846 KiB  
Article
A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation
by Ayman Reffai, Michelle Hori, Ravali Adusumilli, Abel Bermudez, Abdelilah Bouzoubaa, Sharon Pitteri, Mohcine Bennani Mechita and Parag Mallick
Cancers 2024, 16(19), 3282; https://doi.org/10.3390/cancers16193282 - 26 Sep 2024
Cited by 1 | Viewed by 1813
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a distinct cancer of the head and neck that is highly prevalent in Southeast Asia and North Africa. Though an extensive analysis of environmental and genetic contributors has been performed, very little is known about the proteome of [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is a distinct cancer of the head and neck that is highly prevalent in Southeast Asia and North Africa. Though an extensive analysis of environmental and genetic contributors has been performed, very little is known about the proteome of this disease. A proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissues can provide valuable information on protein expression and molecular patterns for both increasing our understanding of the disease and for biomarker discovery. To date, very few NPC proteomic studies have been performed, and none focused on patients from Morocco and North Africa. Methods: Label-free Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) was used to perform a proteomic analysis of FFPE tissue samples from a cohort of 41 NPC tumor samples of Morocco and North Africa origins. The LC-MS/MS data from this cohort were analyzed alongside 21 healthy controls using MaxQuant 2.4.2.0. A differential expression analysis was performed using the MSstats package in R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations were carried out using the DAVID bioinformatic tool. Results: 3341 proteins were identified across our NPC cases, revealing three main clusters and five DEPs with prognostic significance. The sex disparity of NPC was investigated from a proteomic perspective in which 59 DEPs were found between males and females, with significantly enriched terms associated with the immune response and gene expression. Furthermore, 26 DEPs were observed between patients with early and advanced stages of NPC with a significant cluster related to the immune response, implicating up-regulated DEPs such as IGHA, IGKC, and VAT1. Across both datasets, 6532 proteins were quantified between NPC patients and healthy controls. Among them, 1507 differentially expressed proteins (DEPs) were observed. GO and KEGG pathway analyses showed enriched terms of DEPs related to increased cellular activity, cell proliferation, and survival. PI3K and MAPK proteins as well as RAC1 BCL2 and PPIA were found to be overexpressed between cancer tissues and healthy controls. EBV infection was also one of the enriched pathways implicating its latent genes like LMP1 and LMP2 that activate several proteins and signaling pathways including NF-Kappa B, MAPK, and JAK-STAT pathways. Conclusion: Our findings unveil the proteomic landscape of NPC for the first time in the Moroccan population. These studies additionally may provide a foundation for identifying potential biomarkers. Further research is still needed to help develop tools for the early diagnosis and treatment of NPC in Moroccan and North African populations. Full article
Show Figures

Figure 1

15 pages, 1969 KiB  
Article
Proteomic Profiling Identifies Predictive Signatures for Progression Risk in Patients with Advanced-Stage Follicular Lymphoma
by Jonas Klejs Hemmingsen, Marie Hairing Enemark, Emma Frasez Sørensen, Kristina Lystlund Lauridsen, Stephen Jacques Hamilton-Dutoit, Robert Kridel, Bent Honoré and Maja Ludvigsen
Cancers 2024, 16(19), 3278; https://doi.org/10.3390/cancers16193278 - 26 Sep 2024
Cited by 3 | Viewed by 1367
Abstract
Background: Follicular lymphoma (FL) is characterized by an indolent nature and generally favorable prognosis, yet poses a particular clinical challenge, since disease progression is observed in a notable subset of patients. Currently, it is not possible to anticipate which patients will be at [...] Read more.
Background: Follicular lymphoma (FL) is characterized by an indolent nature and generally favorable prognosis, yet poses a particular clinical challenge, since disease progression is observed in a notable subset of patients. Currently, it is not possible to anticipate which patients will be at risk of progression, highlighting the need for reliable predictive biomarkers that can be detected early in the disease. Methods: We applied tandem-mass-tag labelled nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) on 48 diagnostic formalin-fixed, paraffin-embedded tumor samples from patients with advanced-stage FL. Of these, 17 experienced subsequent progression (subsequently-progressing, sp-FL) while 31 did not (non-progressing, np-FL). Results: We identified 99 proteins that were significantly differentially expressed between sp-FL samples and np-FL samples (p < 0.05; log2-fold changes between 0.2 and −1.3). Based on this subset of proteins, we classified patients into high-risk and low-risk subgroups using unsupervised machine learning techniques. Pathway analyses of the identified proteins revealed aberrancies within the immune system and cellular energy metabolism. In addition, two proteins were selected for immunohistochemical evaluation, namely stimulator of interferon genes 1 (STING1) and isocitrate dehydrogenase 2 (IDH2). Notably, IDH2 retained significantly lower expression levels in sp-FL samples compared with np-FL samples (p = 0.034). Low IDH2 expression correlated with shorter progression-free survival (PFS, p = 0.020). Conclusions: This study provides evidence for some of the biological mechanisms likely to be involved in FL progression and, importantly, identifies potential predictive biomarkers for improvement of risk stratification up-front at time of FL diagnosis. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Graphical abstract

Back to TopTop