Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = junctional epidermolysis bullosa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 852 KB  
Review
Cutaneous Squamous Cell Carcinoma in Epidermolysis Bullosa: A Review of Pathogenesis, Diagnosis and Management
by Abarajithan Chandrasekaran and Justin C. Moser
Cancers 2025, 17(19), 3211; https://doi.org/10.3390/cancers17193211 - 1 Oct 2025
Cited by 1 | Viewed by 1655
Abstract
Epidermolysis bullosa (EB) is a group of debilitating, genetic skin disorders characterized by excessive skin fragility, blistering, and ulcerations that cause a cyclical wound healing process. EB presents itself in various subtypes, such as EB simplex (EBS), junctional EB (JEB), dystrophic (DEB), and [...] Read more.
Epidermolysis bullosa (EB) is a group of debilitating, genetic skin disorders characterized by excessive skin fragility, blistering, and ulcerations that cause a cyclical wound healing process. EB presents itself in various subtypes, such as EB simplex (EBS), junctional EB (JEB), dystrophic (DEB), and Kindler Syndrome (KS), which all differ in their genetic cause, severity, and harbor different causes of mortality. Of these variants, JEB and DEB are the most severe, with EBS being the mildest form of the disease and KS presenting in extremely rare cases. The JEB variant tends to cause mortality early on in children less than two years of age due to failure to thrive, sepsis from wound infections, and airway obstruction. In the recessive form of DEB (RDEB), cutaneous squamous cell carcinoma (cSCC) is the major cause of death in patients, with one study reporting a mere 4-year survival after the first EB-cSCC diagnosis. Cutaneous SCCs in the setting of RDEB are particularly concerning because they are often more aggressive and show greater metastatic potential, as compared to ultraviolet-induced SCCs. This review aims to explore the pathophysiology of these EB variants as well as their implications for developing cSCCs. It will also discuss elements of the clinical presentation of such lesions in EB patients and the challenges associated with making a definitive diagnosis. Additionally, we will illuminate various diagnostic techniques, current and future management and treatment strategies for both cSCC and EB, and the importance of early screening and education for patients with EB to maximize patient lifespan and quality of life. Full article
(This article belongs to the Special Issue Precision Oncology for Rare Skin Cancers)
Show Figures

Figure 1

10 pages, 1920 KB  
Case Report
Junctional Epidermolysis Bullosa Caused by a Hemiallelic Nonsense Mutation in LAMA3 Revealed by 18q11.2 Microdeletion
by Matteo Iacoviello, Marilidia Piglionica, Ornella Tabaku, Antonella Garganese, Aurora De Marco, Fabio Cardinale, Domenico Bonamonte and Nicoletta Resta
Int. J. Mol. Sci. 2025, 26(15), 7343; https://doi.org/10.3390/ijms26157343 - 29 Jul 2025
Viewed by 1510
Abstract
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the [...] Read more.
Inherited epidermolysis bullosa (EB) is a heterogeneous clinical entity that includes over 30 phenotypically and/or genotypically distinct inherited disorders, characterized by mechanical skin fragility and bullae formation. Junctional EB (JEB) is an autosomal recessive disease characterized by an intermediated cleavage level within the skin layers, commonly at the “lamina lucida”. Laryngo-onycho-cutaneous syndrome (LOC) is an extremely rare variant of JEB, characterized by granulation tissue formation in specific body sites (skin, larynx, and nails). Although most cases of JEB are caused by pathogenic variants occurring in the genes encoding for classical components of the lamina lucida, such as laminin 332 (LAMA3, LAMB3, LAMC2), integrin α6β4 (ITGA6, ITGB4), and collagen XVII (COL17A1), other variants have also been described. We report the case of a 4-month-old male infant who presented with recurrent bullous and erosive lesions from the first month of life. At the first dermatological evaluation, the patient was agitated and exhibited hoarse breathing, a clinical sign suggestive of laryngeal involvement. Multiple polygonal skin erosions were observed on the cheeks, along with similar isolated, roundish lesions on the scalp and legs. Notably, nail dystrophy and near-complete anonychia were evident on the left first and fifth toes. Due to the coexistence of skin erosions and nail dystrophy in such a young infant, a congenital bullous disorder was suspected, prompting molecular analysis of all potentially involved genes. In the patient’s DNA, clinical exome sequencing (CES) identified a pathogenic variant, apparently in homozygosity, in the exon 1 of the LAMA3 gene (18q11.2; NM_000227.6): c.47G > A;p.Trp16*. The presence of this variant was confirmed, in heterozygosity, in the genomic DNA of the patient’s mother, while it was absent in the father’s DNA. Subsequently, trio-based SNP array analysis was performed, revealing a paternally derived pathogenic microdeletion encompassing the LAMA3 locus (18q11.2). To our knowledge, this is the first reported case of JEB with a LOC-like phenotype caused by a maternally inherited monoallelic nonsense mutation in LAMA3, unmasked by an almost complete deletion of the paternal allele. The combined use of exome sequencing and SNP array is proving essential for elucidating autosomal recessive diseases with a discordant segregation. This is pivotal for providing accurate genetic counseling to parents regarding future pregnancies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

38 pages, 2216 KB  
Review
Mediterranean Basin Erica Species: Traditional Uses, Phytochemistry and Pharmacological Properties
by Khadijah A. Jabal, Maria Pigott, Helen Sheridan and John J. Walsh
Molecules 2025, 30(12), 2616; https://doi.org/10.3390/molecules30122616 - 17 Jun 2025
Cited by 4 | Viewed by 2420
Abstract
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological [...] Read more.
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological potential of the Mediterranean Erica species, including Erica arborea L., Erica multiflora L. and Erica manipuliflora Salisb. A wide spectrum of bioactive secondary metabolites has been identified across these species, notably pentacyclic triterpenes (e.g., lupeol, ursolic acid and oleanolic acid) and polyphenolics (e.g., myricetin and quercetin glycosides). Extracts of these species have demonstrated antioxidant, anti-inflammatory, analgesic, antimicrobial and diuretic activities in vitro and/or in vivo, providing pharmacological support for traditional uses. Phytochemical profiles vary by species, plant part, geography and extraction technique. Filsuvez®, comprising pentacyclic triterpenes from birch bark, has clinical approval for the treatment of partial thickness wounds associated with dystrophic and junctional epidermolysis bullosa. The undoubted reservoir of pentacyclic triterpenes and flavonoid glycosides in Mediterranean Erica species warrants further comprehensive mechanistic studies, toxicological evaluations and clinical validation. Full article
Show Figures

Graphical abstract

18 pages, 3457 KB  
Case Report
Clinical and Allelic Heterogeneity in a Small Cohort of Patients with Inherited Epidermolysis Bullosa
by Anastasiia A. Buianova, Anastasia S. Yagizarova, Anastasiya V. Kosykh, Alexey A. Kubanov, Vera A. Belova, Anna O. Shmitko, Arfenya E. Karamova, Aleksandra A. Martynova, Grigoriy S. Podmoskovnikov, Maria A. Nefedova, Ekaterina S. Monchakovskaya, Dmitriy O. Korostin, Nadya G. Gurskaya and Denis V. Rebrikov
Int. J. Mol. Sci. 2025, 26(12), 5762; https://doi.org/10.3390/ijms26125762 - 16 Jun 2025
Viewed by 1540
Abstract
Inherited epidermolysis bullosa (EB) comprises a group of genetic disorders characterized by fragile skin that blisters easily. Targeted therapies for EB necessitate personalized approaches, underscoring the importance of precise diagnostics through genetic analysis and skin biopsy using transmission electron microscopy and/or immunohistochemistry. This [...] Read more.
Inherited epidermolysis bullosa (EB) comprises a group of genetic disorders characterized by fragile skin that blisters easily. Targeted therapies for EB necessitate personalized approaches, underscoring the importance of precise diagnostics through genetic analysis and skin biopsy using transmission electron microscopy and/or immunohistochemistry. This study highlights the application of whole-exome sequencing (WES) to identify key pathogenic variants associated with EB. Most identified variants were associated with the recessive form of dystrophic EB, including four novel COL7A1 mutations: p.Leu1488ArgfsTer222, c.7759-3C>G, p.Gln1886Ter, and c.6501+6T>C, as well as recurrent variants p.Lys142Arg and p.Gly2049Glu. Additionally, variants were detected in KRT5 (c.971T>C, p.Val324Ala), associated with EB simplex, and in LAMB3 (c.2500C>T, p.Gln834Ter) in the homozygous state, associated with junctional EB. In silico splice prediction tools suggested disrupted splicing in both cases. One patient received topical gentamicin therapy targeting the nonsense mutation p.Gln1886Ter. These findings underscore the utility of WES in EB diagnostics, broaden the mutation spectrum, and contribute to the understanding of genotype–phenotype correlations in adult patients with EB. Full article
(This article belongs to the Special Issue Genetic Mutations in Health and Disease)
Show Figures

Figure 1

19 pages, 1059 KB  
Review
Pathological Mechanisms Involved in Epidermolysis Bullosa Simplex: Current Knowledge and Therapeutic Perspectives
by Mbarka Bchetnia, Julie Powell, Catherine McCuaig, Anne-Marie Boucher-Lafleur, Charles Morin, Audrey Dupéré and Catherine Laprise
Int. J. Mol. Sci. 2024, 25(17), 9495; https://doi.org/10.3390/ijms25179495 - 31 Aug 2024
Cited by 5 | Viewed by 5601
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of [...] Read more.
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of the epidermis. It most often results from dominant mutations in the genes coding for keratin (K) 5 or 14 proteins (KRT5 and KRT14). A disruptive mutation in KRT5 or KRT14 will not only structurally impair the cytoskeleton, but it will also activate a cascade of biochemical mechanisms contributing to EBS. Skin lesions are painful and disfiguring and have a significant impact on life quality. Several gene expression studies were accomplished on mouse model and human keratinocytes to define the gene expression signature of EBS. Several key genes associated with EBS were identified as specific immunological mediators, keratins, and cell junction components. These data deepened the understanding of the EBS pathophysiology and revealed important functional biological processes, particularly inflammation. This review emphasizes the three EBS subtypes caused by dominant mutations on either KRT5 or KRT14 (localized, intermediate, and severe). It aims to summarize current knowledge about the EBS expression profiling pattern and predicted molecular mechanisms involved and to outline progress in therapy. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases)
Show Figures

Figure 1

12 pages, 2085 KB  
Article
Epidemiological Characteristics of Inherited Epidermolysis Bullosa in an Eastern European Population
by Alina Suru, Sorina Dănescu, Alina Călinescu-Stîncanu, Denis Iorga, Mihai Dascălu, Adrian Baican, George-Sorin Țiplica and Carmen Maria Sălăvăstru
J. Clin. Med. 2024, 13(13), 3742; https://doi.org/10.3390/jcm13133742 - 26 Jun 2024
Cited by 4 | Viewed by 4151
Abstract
Background/Objectives: Epidermolysis bullosa (EB) is a hereditary condition characterized by skin and mucosal fragility, with various degrees of severity. This study’s objectives are to obtain updated epidemiological data that will help identify the specific types and subtypes of EB, determine the case [...] Read more.
Background/Objectives: Epidermolysis bullosa (EB) is a hereditary condition characterized by skin and mucosal fragility, with various degrees of severity. This study’s objectives are to obtain updated epidemiological data that will help identify the specific types and subtypes of EB, determine the case distribution in Romania, and establish the incidence and prevalence of the condition. Methods: This population-based observational study included Romanian patients and collected data from 2012 to 2024. The following information was recorded: date of birth, status (deceased or alive), date of death (if applicable/available), sex, county, and city of residence, EB type and subtype if available, diagnosis (clinical and/or immunofluorescence mapping, transmission electron microscopy, genetic molecular analysis), affected genes, inheritance, and affected family members. Results: The study included a total of 152 patients. The point prevalence (the proportion of the population with a condition at a specific point in time) and the incidence of EB in Romania were 6.77 per million population and 24.23 per million live births, respectively. EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), Kindler EB (KEB), and not otherwise specified EB, as well as EB (NOS), were the main types of the condition identified in 21%, 3%, 63%, 2%, and 11% of the total cases. The point prevalence and incidence for the same time intervals were 1.58 and 5.28 in EBS, 0.10 and 1.76 in JEB, 4.72 and 12.34 in DEB, 0.16 and 0 in KEB, and 0.21 and 4.85 in EB (NOS). Conclusions: The study provides updated epidemiological data for Romania and underlines the necessity for accurate diagnosis, facilitated by access to genetic molecular testing and better reporting systems. Full article
(This article belongs to the Section Dermatology)
Show Figures

Graphical abstract

18 pages, 3741 KB  
Article
Splicing Modulation via Antisense Oligonucleotides in Recessive Dystrophic Epidermolysis Bullosa
by Stefan Hainzl, Lisa Trattner, Bernadette Liemberger, Johannes Bischof, Thomas Kocher, Michael Ablinger, Alexander Nyström, Astrid Obermayer, Alfred Klausegger, Christina Guttmann-Gruber, Verena Wally, Johann W. Bauer, Josefina Piñón Hofbauer and Ulrich Koller
Int. J. Mol. Sci. 2024, 25(2), 761; https://doi.org/10.3390/ijms25020761 - 7 Jan 2024
Cited by 5 | Viewed by 3350
Abstract
Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) [...] Read more.
Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2′-O-(2-Methoxyethyl) oligoribo-nucleotides (2′-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2′-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ). Full article
Show Figures

Figure 1

12 pages, 5043 KB  
Article
Independent COL17A1 Variants in Cats with Junctional Epidermolysis Bullosa
by Sarah Kiener, Heather Troyer, Daniel Ruvolo, Paula Grest, Sara Soto, Anna Letko, Vidhya Jagannathan, Tosso Leeb, Elizabeth A. Mauldin, Ching Yang and Ana Rostaher
Genes 2023, 14(10), 1835; https://doi.org/10.3390/genes14101835 - 22 Sep 2023
Cited by 1 | Viewed by 4177
Abstract
Epidermolysis bullosa (EB), characterized by defective adhesion of the epidermis to the dermis, is a heterogeneous disease with many subtypes in human patients and domestic animals. We investigated two unrelated cats with recurring erosions and ulcers on ear pinnae, oral mucosa, and paw [...] Read more.
Epidermolysis bullosa (EB), characterized by defective adhesion of the epidermis to the dermis, is a heterogeneous disease with many subtypes in human patients and domestic animals. We investigated two unrelated cats with recurring erosions and ulcers on ear pinnae, oral mucosa, and paw pads that were suggestive of EB. Histopathology confirmed the diagnosis of EB in both cats. Case 1 was severe and had to be euthanized at 5 months of age. Case 2 had a milder course and was alive at 11 years of age at the time of writing. Whole genome sequencing of both affected cats revealed independent homozygous variants in COL17A1 encoding the collagen type XVII alpha 1 chain. Loss of function variants in COL17A1 lead to junctional epidermolysis bullosa (JEB) in human patients. The identified splice site variant in case 1, c.3019+1del, was predicted to lead to a complete deficiency in collagen type XVII. Case 2 had a splice region variant, c.769+5G>A. Assessment of the functional impact of this variant on the transcript level demonstrated partial aberrant splicing with residual expression of wildtype transcript. Thus, the molecular analyses provided a plausible explanation of the difference in clinical severity between the two cases and allowed the refinement of the diagnosis in the affected cats to JEB. This study highlights the complexity of EB in animals and contributes to a better understanding of the genotype-phenotype correlation in COL17A1-related JEB. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Figure 1

8 pages, 1759 KB  
Article
Epidermolysis Bullosa—A Kindler Syndrome Case Report and Short Literature Review
by Bogdan Ioan Stefanescu, Diana Sabina Radaschin, Geta Mitrea, Lucretia Anghel, Adrian Beznea, Georgiana Bianca Constantin and Alin Laurentiu Tatu
Clin. Pract. 2023, 13(4), 873-880; https://doi.org/10.3390/clinpract13040079 - 30 Jul 2023
Cited by 8 | Viewed by 5995
Abstract
Introduction: Epidermolysis bullosa (EB) represents a group of rare disorders, genetically determined, characterized by skin fragility, blister formation and erosions due to minimal trauma. Depending on the ultrastructural level of skin cleavage, above or below the basement membrane, epidermolysis bullosa can be classified [...] Read more.
Introduction: Epidermolysis bullosa (EB) represents a group of rare disorders, genetically determined, characterized by skin fragility, blister formation and erosions due to minimal trauma. Depending on the ultrastructural level of skin cleavage, above or below the basement membrane, epidermolysis bullosa can be classified into four major types: simplex, junctional, dystrophic and Kindler Syndrome. In the junctional form of EB, the cleavage level is at the dermo-epidermal junction and the targeted proteins are laminin, type XVII collagen and integrins. The dystrophic form of EB is characterized by cleavage in the dermal layer, collagen VII being the targeted protein. In Kindler EB, multiple levels of cleavage have been described. The mutated gene is FERMT1. Another classification of this disease refers to phenotypic aspects such as extracutaneous lesions, severity, and distribution. The management of epidermolysis bullosa includes supportive wound treatments as well as nutritional support. Case report: We present a case of epidermolysis bullosa presented at birth, in a newborn with no family history of bullous skin conditions. The clinical presentation revealed extensive denuded areas and significant skin fragility as well as mucous and nail involvement. Prenatal diagnosis is very hard to achieve due to increased genetic heterogeneity of the disease. The short-term results were good. The importance of prenatal testing and possibilities of diagnosis are reviewed in this article. Conclusions: EB is a devastating disease. The presented case had a favorable evolution, with good short-term results. Significant morbidity can result from secondary infections of blisters and complications of the extracutaneous manifestations. Full article
Show Figures

Figure 1

11 pages, 2429 KB  
Article
Evaluation of Clinical and Oral Findings in Patients with Epidermolysis bullosa
by Yasemin Yavuz, Isa An, Betul Yazmaci, Zeki Akkus and Hatice Ortac
Medicina 2023, 59(7), 1185; https://doi.org/10.3390/medicina59071185 - 21 Jun 2023
Cited by 6 | Viewed by 6094
Abstract
Introduction: Epidermolysis bullosa (EB) is a genetically inherited disease characterized by recurrent bullae and erosions on the skin with numerous signs of dental caries and poor oral hygiene. The aim of this study was to investigate the general clinical and oral findings of [...] Read more.
Introduction: Epidermolysis bullosa (EB) is a genetically inherited disease characterized by recurrent bullae and erosions on the skin with numerous signs of dental caries and poor oral hygiene. The aim of this study was to investigate the general clinical and oral findings of patients with EB. Materials and Methods: In this prospective study, the clinical and oral findings and family history of 26 cases with EB were evaluated. The type of EB, gender, age, parental consanguinity, dental caries, oral findings, distribution of lesions and presence of associated anomalies, clinical and oral findings correlated with gender were recorded. Results: All 26 patients with EB had a history of consanguinity and siblings with EB to varying degrees. In our study, malnutrition, anemia and growth retardation, gastrointestinal system complications, hair thinning, hand and nail deformity, ocular problems and renal disease (in one case) were observed with variable frequencies. When the intraoral findings of the patients were investigated, extensive dental caries in all EB types, enamel hypoplasia in junctional EB (JEB) and the presence of tooth-root to be extracted in dystrophic EB (DEB), intraoral bullae and lesions, ankyloglossia, vestibular sulcus insufficiency, microstomia and maxillary atrophy were observed. Three cases had restorative treatment and one case had prosthetic rehabilitation. Conclusions: Oral involvement can be seen with varying frequencies depending on the type of EB and the severity of the disease. It may result from delayed oral and dental rehabilitation due to physical disabilities, limitations and more pressing medical problems. Microstomy, pain from mucosal lesions, and restricted access to the mouth can be caused by poor oral hygiene. Oral complications and caloric needs of individuals with EB should be determined, and individual prophylaxis should be applied to prevent caries formation and protect teeth. Full article
(This article belongs to the Special Issue Dentistry: A Multidisciplinary Approach)
Show Figures

Figure 1

13 pages, 6103 KB  
Article
Trametinib-Induced Epidermal Thinning Accelerates a Mouse Model of Junctional Epidermolysis Bullosa
by Grace Tartaglia, Pyung Hun Park, Michael H. Alexander, Alexander Nyström, Joel Rosenbloom and Andrew P. South
Biomolecules 2023, 13(5), 740; https://doi.org/10.3390/biom13050740 - 25 Apr 2023
Cited by 2 | Viewed by 3187
Abstract
Junctional epidermolysis bullosa (JEB) patients experience skin and epithelial fragility due to a pathological deficiency in genes associated with epidermal adhesion. Disease severity ranges from post-natal lethality to localized skin involvement with persistent blistering followed by granulation tissue formation and atrophic scarring. We [...] Read more.
Junctional epidermolysis bullosa (JEB) patients experience skin and epithelial fragility due to a pathological deficiency in genes associated with epidermal adhesion. Disease severity ranges from post-natal lethality to localized skin involvement with persistent blistering followed by granulation tissue formation and atrophic scarring. We evaluated the potential of utilizing Trametinib, an MEK inhibitor previously shown to target fibrosis, with and without the documented EB-anti-fibrotic Losartan for reducing disease severity in a mouse model of JEB; Lamc2jeb mice. We found that Trametinib treatment accelerated disease onset and decreased epidermal thickness, which was in large part ameliorated by Losartan treatment. Interestingly, a range of disease severity was observed in Trametinib-treated animals that tracked with epidermal thickness; those animals grouped with higher disease severity had thinner epidermis. To examine if the difference in severity was related to inflammation, we conducted immunohistochemistry for the immune cell markers CD3, CD4, CD8, and CD45 as well as the fibrotic marker αSMA in mouse ears. We used a positive pixel algorithm to analyze the resulting images and demonstrated that Trametinib caused a non-significant reduction in CD4 expression that inversely tracked with increased fibrotic severity. With the addition of Losartan to Trametinib, CD4 expression was similar to control. Together, these data suggest that Trametinib causes a reduction in both epidermal proliferation and immune cell infiltration/proliferation, with concurrent acceleration of skin fragility, while Losartan counteracts Trametinib’s adverse effects in a mouse model of JEB. Full article
(This article belongs to the Special Issue Role of Mesenchymal Cells in Wound Healing and Fibrosis)
Show Figures

Figure 1

19 pages, 706 KB  
Review
Stem Cell Therapies for Epidermolysis Bullosa Treatment
by Argyrw Niti, Georgios Koliakos and Anna Michopoulou
Bioengineering 2023, 10(4), 422; https://doi.org/10.3390/bioengineering10040422 - 27 Mar 2023
Cited by 20 | Viewed by 6538
Abstract
Epidermolysis bullosa (EB) includes a group of rare skin diseases characterized by skin fragility with bullous formation in the skin, in response to minor mechanical injury, as well as varying degrees of involvement of the mucous membranes of the internal organs. EB is [...] Read more.
Epidermolysis bullosa (EB) includes a group of rare skin diseases characterized by skin fragility with bullous formation in the skin, in response to minor mechanical injury, as well as varying degrees of involvement of the mucous membranes of the internal organs. EB is classified into simplex, junctional, dystrophic and mixed. The impact of the disease on patients is both physical and psychological, with the result that their quality of life is constantly affected. Unfortunately, there are still no approved treatments available to confront the disease, and treatment focuses on improving the symptoms with topical treatments to avoid complications and other infections. Stem cells are undifferentiated cells capable of producing, maintaining and replacing terminally differentiated cells and tissues. Stem cells can be isolated from embryonic or adult tissues, including skin, but are also produced by genetic reprogramming of differentiated cells. Preclinical and clinical research has recently greatly improved stem cell therapy, making it a promising treatment option for various diseases in which current medical treatments fail to cure, prevent progression, or alleviate symptoms. So far, stem cells from different sources, mainly hematopoietic and mesenchymal, autologous or heterologous have been used for the treatment of the most severe forms of the disease each one of them with some beneficial effects. However, the mechanisms through which stem cells exert their beneficial role are still unknown or incompletely understood and most importantly further research is required to evaluate the effectiveness and safety of these treatments. The transplantation of skin grafts to patients produced by gene-corrected autologous epidermal stem cells has been proved to be rather successful for the treatment of skin lesions in the long term in a limited number of patients. Nevertheless, these treatments do not address the internal epithelia-related complications manifested in patients with more severe forms. Full article
(This article belongs to the Special Issue Recent Advances in Skin Repair and Regeneration)
Show Figures

Figure 1

12 pages, 3938 KB  
Article
A Novel Fluorescence-Based Screen of Gene Editing Molecules for Junctional Epidermolysis Bullosa
by Janine Zwicklhuber, Thomas Kocher, Bernadette Liemberger, Stefan Hainzl, Johannes Bischof, Dirk Strunk, Anna M. Raninger, Iris Gratz, Verena Wally, Christina Guttmann-Gruber, Josefina Piñón Hofbauer, Johann W. Bauer and Ulrich Koller
Int. J. Mol. Sci. 2023, 24(6), 5197; https://doi.org/10.3390/ijms24065197 - 8 Mar 2023
Cited by 3 | Viewed by 3456
Abstract
Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated COL17A1 encoding type XVII collagen [...] Read more.
Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated COL17A1 encoding type XVII collagen (C17), a transmembrane protein involved in connecting basal keratinocytes to the underlying dermis of the skin. Using the CRISPR/Cas9 system of Streptococcus pyogenes we fused the coding sequence of GFP to COL17A1 leading to the constitutive expression of GFP-C17 fusion proteins under the control of the endogenous promoter in human wild-type and JEB keratinocytes. We confirmed the accurate full-length expression and localization of GFP-C17 to the plasma membrane via fluorescence microscopy and Western blot analysis. As expected, the expression of GFP-C17mut fusion proteins in JEB keratinocytes generated no specific GFP signal. However, the CRISPR/Cas9-mediated repair of a JEB-associated frameshift mutation in GFP-COL17A1mut-expressing JEB cells led to the restoration of GFP-C17, apparent in the full-length expression of the fusion protein, its accurate localization within the plasma membrane of keratinocyte monolayers as well as within the basement membrane zone of 3D-skin equivalents. Thus, this fluorescence-based JEB cell line provides the potential to serve as a platform to screen for personalized gene editing molecules and applications in vitro and in appropriate animal models in vivo. Full article
Show Figures

Figure 1

22 pages, 1119 KB  
Review
Application of Amniotic Membrane in Skin Regeneration
by Nurul Fitriani, Gofarana Wilar, Angga Cipta Narsa, Ahmed F. A. Mohammed and Nasrul Wathoni
Pharmaceutics 2023, 15(3), 748; https://doi.org/10.3390/pharmaceutics15030748 - 23 Feb 2023
Cited by 31 | Viewed by 7235
Abstract
Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth [...] Read more.
Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth factors, cytokines, chemokines, and other regulatory molecules produced by endogenous cells within AM. Therefore, AM is considered an attractive skin-regenerating agent. This review discusses the application of AM in skin regeneration, including its preparation for application to the skin and its mechanisms of therapeutic healing in the skin. This review involved collecting research articles that have been published in several databases, including Google Scholar, PubMed, Science Direct, and Scopus. The search was conducted by using the keywords ‘amniotic membrane skin’, ‘amniotic membrane wound healing’, ‘amniotic membrane burn’, ‘amniotic membrane urethral defects’, ‘amniotic membrane junctional epidermolysis bullosa’, and ‘amniotic membrane calciphylaxis’. Ultimately, 87 articles are discussed in this review. Overall, AM has various activities that help in the regeneration and repair of damaged skin. Full article
Show Figures

Graphical abstract

17 pages, 1163 KB  
Review
Epidermolysis Bullosa Acquisita—Current and Emerging Treatments
by Deša Tešanović Perković, Zrinka Bukvić Mokos and Branka Marinović
J. Clin. Med. 2023, 12(3), 1139; https://doi.org/10.3390/jcm12031139 - 1 Feb 2023
Cited by 13 | Viewed by 6730
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare chronic autoimmune subepidermal blistering disease of the skin and mucous membranes, usually beginning in adulthood. EBA is induced by autoantibodies to type VII collagen, a major component of anchoring fibrils in the dermal–epidermal junction (DEJ). The [...] Read more.
Epidermolysis bullosa acquisita (EBA) is a rare chronic autoimmune subepidermal blistering disease of the skin and mucous membranes, usually beginning in adulthood. EBA is induced by autoantibodies to type VII collagen, a major component of anchoring fibrils in the dermal–epidermal junction (DEJ). The binding of autoantibodies to type-VII collagen subsequently leads to the detachment of the epidermis and the formation of mucocutaneous blisters. EBA has two major clinical subtypes: the mechanobullous and inflammatory variants. The classic mechanobullous variant presentation consists of skin fragility, bullae with minimal clinical or histological inflammation, erosions in acral distribution that heal with scarring, and milia formation. The inflammatory variant is challenging to differentiate from other autoimmune bullous diseases, most commonly bullous pemphigoid (BP) but also mucous membrane pemphigoid (MMP), Brunsting–Perry pemphigoid, and linear IgA dermatosis. Due to its recalcitrance conventional treatment of epidermolysis bullosa acquisita is shown to be demanding. Here we discuss novel therapeutic strategies that have emerged and which could potentially improve the quality of life in patients with EBA. Full article
Show Figures

Figure 1

Back to TopTop