Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = jujube flower disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3182 KiB  
Article
Effects of Actinomycete Act12 on Soil Microbial Community Structure and Plant Traits of Ziziphus jujuba Mill.
by Halina Hamaila, Gang Han and Xingang Li
Agronomy 2024, 14(7), 1411; https://doi.org/10.3390/agronomy14071411 - 28 Jun 2024
Cited by 3 | Viewed by 1081
Abstract
Biocontrol agents play a crucial role in agricultural production by reducing the use of pesticides and chemical fertilizers, controlling pests and diseases, and enhancing crop yield and quality. While extensive research has focused on the growth-promoting and yield-increasing effects of biocontrol agents on [...] Read more.
Biocontrol agents play a crucial role in agricultural production by reducing the use of pesticides and chemical fertilizers, controlling pests and diseases, and enhancing crop yield and quality. While extensive research has focused on the growth-promoting and yield-increasing effects of biocontrol agents on herbaceous plants, their impact on woody crops such as trees and shrubs has not been reported. This study investigates the effects of the actinomycete strain Act12, applied via root drenching and foliar spraying, on the flowering and fruit set rates, leaf physiology and enzyme activity, and fruit characteristics and yield of the jujube tree (Ziziphus jujuba Mill.). Additionally, this study analyzes the physicochemical properties of the soil and the diversity and community structure of its microorganisms. The results indicate that treatment with Act12 significantly altered the α and β diversity of soil microorganisms and enhanced the interaction networks among them. This led to increased levels of available nitrogen, phosphorus, and potassium in the soil, significantly improving nutrient availability. Consequently, there was an improvement in the number of flower buds and fruits, as well as an increase in the longitudinal diameter and individual fruit weight of the jujube. These effects significantly enhanced the yield and total sugar content of the winter jujube. Given these findings, Act12 can be considered an effective microbial agent for enhancing the yield and quality of winter jujube when applied to the soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 2663 KiB  
Article
Preliminary Study on the Pathogenic Mechanism of Jujube Flower Disease in Honeybees (Apis mellifera ligustica) Based on Midgut Transcriptomics
by Yali Du, Kai Xu, Huiting Zhao, Ying Wu, Haibin Jiang, Jinming He and Yusuo Jiang
Genes 2024, 15(5), 533; https://doi.org/10.3390/genes15050533 - 24 Apr 2024
Cited by 1 | Viewed by 1326
Abstract
Honeybees are prone to poisoning, also known as jujube flower disease, after collecting nectar from jujube flowers, resulting in the tumultuous demise of foragers. The prevalence of jujube flower disease has become one of the main factors affecting the development of the jujube [...] Read more.
Honeybees are prone to poisoning, also known as jujube flower disease, after collecting nectar from jujube flowers, resulting in the tumultuous demise of foragers. The prevalence of jujube flower disease has become one of the main factors affecting the development of the jujube and beekeeping industries in Northern China. However, the pathogenic mechanisms underlying jujube flower disease in honeybees are poorly understood. Herein, we first conducted morphological observations of the midgut using HE-staining and found that jujube flower disease-affected honeybees displayed midgut damage with peritrophic membrane detachment. Jujube flower disease was found to increase the activity of chitinase and carboxylesterase (CarE) and decrease the activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and the content of CYP450 in the honeybee midgut. Transcriptomic data identified 119 differentially expressed genes in the midgut of diseased and healthy honeybees, including CYP6a13, CYP6a17, CYP304a1, CYP6a14, AADC, and AGXT2, which are associated with oxidoreductase activity and vitamin binding. In summary, collecting jujube flower nectar could reduce antioxidant and detoxification capacities of the honeybee midgut and, in more severe cases, damage the intestinal structure, suggesting that intestinal damage might be the main cause of honeybee death due to jujube nectar. This study provides new insights into the pathogenesis of jujube flower disease in honeybees. Full article
(This article belongs to the Special Issue Genomics, Transcriptomics, and Proteomics of Insects)
Show Figures

Figure 1

25 pages, 3784 KiB  
Review
Sour Jujube (Ziziphus jujuba var. spinosa): A Bibliometric Review of Its Bioactive Profile, Health Benefits and Trends in Food and Medicine Applications
by Wei Ruan, Junli Liu, Shixiong Zhang, Yuqing Huang, Yuting Zhang and Zhixin Wang
Foods 2024, 13(5), 636; https://doi.org/10.3390/foods13050636 - 20 Feb 2024
Cited by 10 | Viewed by 6531
Abstract
Research on the comprehensive utilization of sour jujube and its beneficial properties to human health has attracted extensive attention. This study aims to conduct a bibliometric analysis of the bioactive profile of sour jujube and future trends in applications. The research advancements within [...] Read more.
Research on the comprehensive utilization of sour jujube and its beneficial properties to human health has attracted extensive attention. This study aims to conduct a bibliometric analysis of the bioactive profile of sour jujube and future trends in applications. The research advancements within this field from 2000 to 2023 were addressed using the Web of Science database and VOSviewer. Among the 322 results, the most frequent keywords of bioactivity are flavonoids, antioxidants, saponins, insomnia, polyphenols, terpenoids and anti-inflammatory; the most studied parts of sour jujube are seeds, fruits and leaves; the published articles with high citations mainly focus on identification, biological effects and different parts distribution of bioactive compounds. The bioactivity of various parts of sour jujube was reviewed considering their application potential. The seeds, rich in flavonoids, saponins and alkaloids, exhibit strong effects on central nervous system diseases and have been well-developed in pharmacology, healthcare products and functional foods. The pulp has antioxidant properties and is used to develop added-value foods (e.g., juice, vinegar, wine). The leaves can be used to make tea and flowers are good sources of honey; their extracts are rich sources of flavonoids and saponins, which show promising medicinal effects. The branches, roots and bark have healing properties in traditional folk medicine. Overall, this study provides a reference for future applications of sour jujube in food and medicine fields. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

11 pages, 3054 KiB  
Article
Bacillus licheniformis PR2 Controls Fungal Diseases and Increases Production of Jujube Fruit under Field Conditions
by Jun-Hyeok Kwon, Sang-Jae Won, Jae-Hyun Moon, Uk Lee, Yun-Serk Park, Chaw Ei Htwe Maung, Henry B. Ajuna and Young Sang Ahn
Horticulturae 2021, 7(3), 49; https://doi.org/10.3390/horticulturae7030049 - 12 Mar 2021
Cited by 27 | Viewed by 5581
Abstract
There is a growing interest in using biocontrol agents to control fungal diseases and increase the production of jujube fruit (Zizyphus jujua Miller var. inermis Rehder). The purpose of this study was to use Bacillus licheniformis PR2 to inhibit fungal diseases and [...] Read more.
There is a growing interest in using biocontrol agents to control fungal diseases and increase the production of jujube fruit (Zizyphus jujua Miller var. inermis Rehder). The purpose of this study was to use Bacillus licheniformis PR2 to inhibit fungal diseases and promote fruit production in jujube orchards. B. licheniformis PR2 secreted 92.4 unit/mL of chitinase, which inhibited fungal phytopathogens through hyphal alterations with swelling and bulbous structures. B. licheniformis PR2 also inhibited mycelial growths of fruit fungal pathogens Botrytis cinerea, Colletotrichum gloeosporioides, and Phytophthora nicotianae by 81.3%, 60.1%, and 67.0%, respectively. B. licheniformis PR2 increased jujube fruit yield by 17.9 kg/tree by reducing rotting damage caused by fungal pathogens, with a yield 3.2 times higher than that achieved by the control without PR2 treatment. In addition, B. licheniformis PR2 produced auxin, which promoted cell division after flower fertilization, thus increasing fruit length and diameter by 1.2-fold compared to those of the control. These results confirmed that eco-friendly B. licheniformis PR2 could effectively control fungal diseases in jujube orchards and improve its fruit size and yield. Full article
(This article belongs to the Special Issue The Effect of Plant Pathogens on Horticultural Plants)
Show Figures

Figure 1

Back to TopTop