Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = joint mechanism for a sustainable robot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2316 KB  
Communication
Highly Sensitive Light Guide Sensor for Multilocation and Multimodal Deformation Decoupling Using Flexible OLED
by Hayoon Lee, Hyeon Seok An and Jongwook Park
Photonics 2025, 12(9), 909; https://doi.org/10.3390/photonics12090909 - 10 Sep 2025
Viewed by 315
Abstract
This work proposes a highly sensitive optical sensor system that compensates for joint fragility by combining a flexible organic light-emitting diode (FOLED) with a stretchable light guide, and its performance was systematically evaluated. The developed sensor, leveraging the high flexibility of OLEDs, was [...] Read more.
This work proposes a highly sensitive optical sensor system that compensates for joint fragility by combining a flexible organic light-emitting diode (FOLED) with a stretchable light guide, and its performance was systematically evaluated. The developed sensor, leveraging the high flexibility of OLEDs, was capable of detecting mechanical deformations in various positions and forms in real time and could distinguish up to seven independent signals without electromagnetic interference. Under repeated 50% tensile strain, the device sustained 130,000 cycles, and during the 75° bending test, all three configurations—single line, serpentine, and serpentine with bump—exhibited stable performance for a minimum of 80,000 cycles. The sensor system developed in this study holds promise for future applications in wearable electronics and robotics. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

12 pages, 2311 KB  
Communication
Dual-Responsive Starch Hydrogels via Physicochemical Crosslinking for Wearable Pressure and Ultra-Sensitive Humidity Sensing
by Zi Li, Jinhui Zhu, Zixuan Wang, Hao Hu and Tian Zhang
Sensors 2025, 25(16), 5006; https://doi.org/10.3390/s25165006 - 13 Aug 2025
Viewed by 435
Abstract
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile [...] Read more.
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile “one-pot” strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I0, ~2.3) with rapid response (0.1 s). In its dried state (D-SPG), the film leverages the starch’s hygroscopicity for humidity sensing, detecting minute moisture changes (ΔRH = 6.6%) within 120 ms and outputting 0.4~0.5 (ΔI/I0) signal amplitudes. The distinct state-dependent responsiveness enables tailored applications: SPG monitors physiological motions (e.g., pulse waves and joint movements) via conformal skin attachment, while D-SPG integrated into masks quantifies respiratory intensity with 3× signal enhancement during exercise. This work pioneers a sustainable candidate for biodegradable flexible electronics, overcoming trade-off limitations between mechanical integrity, signal stability, and dual responsiveness in starch hydrogels through synergistic network design. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

20 pages, 5630 KB  
Review
A Roadmap for the Reliable Design of Aluminium Structures Fit for Future Requirements—The REAL-Fit Project
by Davor Skejić, Anđelo Valčić, Ivan Čudina, Ivica Garašić and Tihomir Dokšanović
Buildings 2025, 15(11), 1906; https://doi.org/10.3390/buildings15111906 - 1 Jun 2025
Cited by 1 | Viewed by 814
Abstract
Although structural aluminium alloys have many advantages (low self-weight, corrosion resistance, 100% recyclable), they are associated with some conservative design methods in Eurocode 9. Conservative reductions in aluminium’s mechanical properties in the welded connection zone and the limitations of extruded aluminium members (the [...] Read more.
Although structural aluminium alloys have many advantages (low self-weight, corrosion resistance, 100% recyclable), they are associated with some conservative design methods in Eurocode 9. Conservative reductions in aluminium’s mechanical properties in the welded connection zone and the limitations of extruded aluminium members (the relatively small dimensions and uniform shape of the profile over the length) significantly limit the use of aluminium in load-bearing structures. This paper summarises the background, planned activities, and preliminary results of the ongoing REAL-fit project. The aim of the project is to conduct comprehensive interdisciplinary research on the feasibility of applying innovative automated (robotic) welding technologies and reliable design methods for aluminium welded members, joints, and entire structural systems. In this paper, the shortcomings of the current design approach are identified, and experimental, numerical, and reliability-based methodology for possible improvements is proposed. Furthermore, the project considers the integration of the advanced direct design method (DDM) with the methods of life cycle assessment (LCA) and life cycle cost analysis (LCCA) as a possible direction for establishing a more holistic evaluation framework. This is precisely one of the project’s ultimate goals, which will assess the reliability and sustainability of economical aluminium structures throughout their life cycle. Full article
Show Figures

Figure 1

8 pages, 7098 KB  
Proceeding Paper
Caninoid Necro-Robots: Geometrically Selected Rearticulation of Canine Mandibles
by Ben Jørgensen, Oscar Powell, Freddie Coen, Jack Lord, Yang Han Ng, Jeremiah Brennan, Gurå Therese Bergkvist and Parvez Alam
Mater. Proc. 2025, 20(1), 5; https://doi.org/10.3390/materproc2025020005 - 12 Mar 2025
Viewed by 905
Abstract
In line with Sustainable Development Goal 9 (sustainable industrialisation and innovation), environmentally responsible engineering designs in modern robotics should consider factors such as renewability, sustainability, and biodegradability. The robotics sector is growing at an exponential rate and, as a consequence, its contribution to [...] Read more.
In line with Sustainable Development Goal 9 (sustainable industrialisation and innovation), environmentally responsible engineering designs in modern robotics should consider factors such as renewability, sustainability, and biodegradability. The robotics sector is growing at an exponential rate and, as a consequence, its contribution to e-waste is a growing concern. Our work contributes to the technological development of caninoid necro-robots, robots that are built from the skeletons of deceased dogs. The already formed skeletal structures of deceased dogs (and other animals) are ideal natural material replacements for synthetic robotic architectures such as plastics, metals, and composites. Since dog skeletons are disarticulated, simple but effective methods need to be developed to rearticulate their bodies. The canine head is essentially a large end effector, but its mandible is held together by a fibrocartilaginous joint (symphysis) that degrades at a higher rate than the bone itself. The degradation of the symphysis would ordinarily negate the utility of a canine head as a necro-robotic end effector; however, in this research, we consider simple methods of mandible reinforcement to circumvent this problem. Our research uses 3D scans of a real canine head, which is modelled using the finite element method to ascertain optimal geometrical reinforcements for the mandible. The full head structures and their reinforcements are printed and adhesively connected to determine the most effective reinforcing strategy of the mandible. Here, we elucidate geometrically selected reinforcement designs that are evidenced through mechanical testing, to successfully increase the stiffness of a disarticulated mandible. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

23 pages, 15584 KB  
Article
Comparison of GFRP (Glass Fiber-Reinforced Polymer) and CFRP (Carbon Fiber-Reinforced Polymer) Composite Adhesive-Bonded Single-Lap Joints Used in Marine Environments
by Gurcan Atakok and Dudu Mertgenc Yoldas
Sustainability 2024, 16(24), 11105; https://doi.org/10.3390/su162411105 - 18 Dec 2024
Cited by 5 | Viewed by 2935
Abstract
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling [...] Read more.
Macroscopic structures consisting of two or more materials are called composites. The decreasing reserves of the world’s oil reserve and the environmental pollution of existing energy and production resources made the use of recycling methods inevitable. There are mechanical, thermal, and chemical recycling methods for the recycling of thermosets among composite materials. The recycling of thermoset composite materials economically saves resources and energy in the production of reinforcement and matrix materials. Due to the superior properties such as hardness, strength, lightness, corrosion resistance, design width, and the flexibility of epoxy/vinylester/polyester fibre formation composite materials combined with thermoset resin at the macro level, environmentally friendly sustainable development is happening with the increasing use of composite materials in many fields such as the maritime sector, space technology, wind energy, the manufacturing of medical devices, robot technology, the chemical industry, electrical electronic technology, the construction and building sector, the automotive sector, the defence industry, the aviation sector, the food and agriculture sector, and sports equipment manufacturing. Bonded joint studies in composite materials have generally been investigated at the level of a single composite material and single joint. The uncertainty of the long-term effects of different composite materials and environmental factors in single-lap bonded joints is an important obstacle in applications. The aim of this study is to investigate the effects of single-lap bonded GFRP (glass fibre-reinforced polymer) and CFRP (carbon fibre-reinforced polymer) specimens on the material at the end of seawater exposure. In this study, 0/90 orientation twill weave seven-ply GFRP and eight-ply CFRP composite materials were used in dry conditions (without seawater soaking) and the hand lay-up method. Seawater was taken from the Aegean Sea, İzmir province (Selçuk/Pamucak), in September at 23.5 °C. This seawater was kept in different containers in seawater for 1 month (30 days), 2 months (60 days), and 3 months (90 days) separately for GFRP and CFRP composite samples. They were cut according to ASTM D5868-01 for single-lap joint connections. Moisture retention percentages and axial impact tests were performed. Three-point bending tests were then performed according to ASTM D790. Damage to the material was examined with a ZEISS GEMINESEM 560 scanning electron microscope (SEM). The SEM was used to observe the interface properties and microstructure of the fracture surfaces of the composite samples by scanning images with a focused electron beam. Damage analysis imaging was performed on CFRP and GFRP specimens after sputtering with a gold compound. Moisture retention rates (%), axial impact tests, and three-point bending test specimens were kept in seawater with a seawater salinity of 3.3–3.7% and a seawater temperature of 23.5 °C for 1, 2, and 3 months. Moisture retention rates (%) are 0.66%, 3.43%, and 4.16% for GFRP single-lap bonded joints in a dry environment and joints kept for 1, 2, and 3 months, respectively. In CFRP single-lap bonded joints, it is 0.57%, 0.86%, and 0.87%, respectively. As a result of axial impact tests, under a 30 J impact energy level, the fracture toughness of GFRP single-lap bonded joints kept in a dry environment and seawater for 1, 2, and 3 months are 4.6%, 9.1%, 14.7%, and 11.23%, respectively. At the 30 J impact energy level, the fracture toughness values of CFRP single-lap bonded joints in a dry environment and in seawater for 1, 2, and 3 months were 4.2%, 5.3%, 6.4%, and 6.1%, respectively. As a result of three-point bending tests, GFRP single-lap joints showed a 5.94%, 8.90%, and 12.98% decrease in Young’s modulus compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. CFRP single-lap joints showed that Young’s modulus decreased by 1.28%, 3.39%, and 3.74% compared to dry joints kept in seawater for 1, 2, and 3 months, respectively. Comparing the GFRP and CFRP specimens formed by a single-lap bonded connection, the moisture retention percentages of GFRP specimens and the amount of energy absorbed in axial impact tests increased with the soaking time in seawater, while Young’s modulus was less in three-point bending tests, indicating that CFRP specimens have better mechanical properties. Full article
Show Figures

Figure 1

15 pages, 4032 KB  
Article
Toward Cost-Effective Timber Shell Structures through the Integration of Computational Design, Digital Fabrication, and Mechanical Integral ‘Half-Lap’ Joints
by Emerson Porras, Doris Esenarro, Lidia Chang, Walter Morales, Carlos Vargas and Joseph Sucasaca
Buildings 2024, 14(6), 1735; https://doi.org/10.3390/buildings14061735 - 9 Jun 2024
Cited by 2 | Viewed by 3843
Abstract
In a global context, where the construction industry is a major source of CO2 emissions and resource use, is dependent on concrete and its risks, and lags behind in digitalization, a clear need arises to direct architecture towards more practical, efficient, and [...] Read more.
In a global context, where the construction industry is a major source of CO2 emissions and resource use, is dependent on concrete and its risks, and lags behind in digitalization, a clear need arises to direct architecture towards more practical, efficient, and sustainable practices. This research introduces an alternative technique for building timber space structures, aiming to expand its applications in areas with limited access to advanced technologies such as CNCs with more than five axes and industrial robotic arms. This involves reconfiguring economic and ecological constraints to maximize the structural and architectural advantages of these systems. The method develops a parametric tool that integrates computational design and manufacturing based on two-axis laser cutting for shells with segmented hexagonal plywood plates. It uses a modified ‘half-lap joint’ mechanical joint, also made of plywood and without additional fasteners, ensuring a precise and robust connection. The results demonstrate the compatibility of the geometry with two-axis CNC machines, which simplifies manufacturing and reduces the cuts required, thus increasing economic efficiency. The prototype, with a span of 1.5 m and composed of 63 plywood panels and 163 connectors, each 6 mm thick, supported a point load of 0.8 kN with a maximum displacement of 5 mm, weighing 15.1 kg. Assembly and disassembly, carried out by two students, took 5 h and 1.45 h, respectively, highlighting the practicality and accessibility of the method. In conclusion, the technique for building timber shells based on two-axis CNC is feasible and effective, proven by practical experimentation and finite element analysis. Full article
Show Figures

Figure 1

18 pages, 5880 KB  
Study Protocol
Study on the Fragrant Pear-Picking Sequences Based on the Multiple Weighting Method
by Wenhong Ma, Zhouyang Yang, Xiaochen Qi, Yu Xu, Dan Liu, Housen Tan, Yongbin Li and Xuhai Yang
Agriculture 2023, 13(10), 1923; https://doi.org/10.3390/agriculture13101923 - 30 Sep 2023
Cited by 4 | Viewed by 1522
Abstract
The production of the Korla fragrant pear is significant, but the optimal harvesting time is short; therefore, the reasonable use of mechanical arms for harvesting is conducive to promoting the sustainable development of the fragrant pear industry. The efficiency of a robot arm [...] Read more.
The production of the Korla fragrant pear is significant, but the optimal harvesting time is short; therefore, the reasonable use of mechanical arms for harvesting is conducive to promoting the sustainable development of the fragrant pear industry. The efficiency of a robot arm when picking fragrant pears is not only determined by the successful extraction of fragrant pears in a complex environment, but the picking sequence of fragrant pears also directly affects the efficiency of the robot arm. In order to simulate an orchard-picking scenario, this paper built three fragrant pear tree models indoors. The number of fragrant pears on the fragrant pear trees was 5, 10, and 20. Three sets of experiments were designed for comparison with real-world conditions. The main steps were as follows: calibrate the three-dimensional coordinates of each fragrant pear on the fragrant pear trees; determine the end position of the robotic arm at each picking point; find the inverse solution for each group; transform the solutions into matrix form using the rated power of each joint as the weight, and identify the minimum value, which is the angle of each joint in the robotic arm when picking the fragrant pear; use the intelligent socket to find the average energy consumption and average time consumed for picking each group of fragrant pears; and determine the loss ratio of the robotic arm based on the amount of rotation in each joint during picking. The experimental results show that the multiple weighting method reduced the energy consumption by 10.627%, 16.072%, and 24.417%, and the time consumption by 11.988%, 14.428%, and 22.561%, respectively, relative to the hybrid ant colony–particle swarm optimization algorithm, which proves the rationality of the fragrant pear picking order delineated using the multiple weighting method. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 942 KB  
Article
Sustainable Multi-Modal Sensing by a Single Sensor Utilizing the Passivity of an Elastic Actuator
by Takashi Takuma, Ken Takamine and Tatsuya Masuda
Actuators 2014, 3(2), 66-83; https://doi.org/10.3390/act3020066 - 12 May 2014
Cited by 2 | Viewed by 8333
Abstract
When a robot equipped with compliant joints driven by elastic actuators contacts an object and its joints are deformed, multi-modal information, including the magnitude and direction of the applied force and the deformation of the joint, is used to enhance the performance of [...] Read more.
When a robot equipped with compliant joints driven by elastic actuators contacts an object and its joints are deformed, multi-modal information, including the magnitude and direction of the applied force and the deformation of the joint, is used to enhance the performance of the robot such as dexterous manipulation. In conventional approaches, some types of sensors used to obtain the multi-modal information are attached to the point of contact where the force is applied and at the joint. However, this approach is not sustainable for daily use in robots, i.e., not durable or robust, because the sensors can undergo damage due to the application of excessive force and wear due to repeated contacts. Further, multiple types of sensors are required to measure such physical values, which add to the complexity of the device system of the robot. In our approach, a single type of sensor is used and it is located at a point distant from the contact point and the joint, and the information is obtained indirectly by the measurement of certain physical parameters that are influenced by the applied force and the joint deformation. In this study, we employ the McKibben pneumatic actuator whose inner pressure changes passively when a force is applied to the actuator. We derive the relationships between information and the pressures of a two-degrees-of-freedom (2-DoF) joint mechanism driven by four pneumatic actuators. Experimental results show that the multi-modal information can be obtained by using the set of pressures measured before and after the force is applied. Further, we apply our principle to obtain the stiffness values of certain contacting objects that can subsequently be categorized by using the aforementioned relationships. Full article
(This article belongs to the Special Issue Soft Actuators)
Show Figures

Figure 1

Back to TopTop