Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = jatropha oil (JO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2648 KiB  
Article
Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion
by Murni Sundang, Nur Sjanrah Nurdin, Sariah Saalah, Yamunah Jaibalah Singam, Syeed SaifulAzry Osman Al Edrus, Noor Maizura Ismail, Coswald Stephen Sipaut and Luqman Chuah Abdullah
Polymers 2022, 14(18), 3715; https://doi.org/10.3390/polym14183715 - 6 Sep 2022
Cited by 14 | Viewed by 3140
Abstract
The utilization of vegetable oil in the production of polymeric material has gained interest due to its proven ability to replace nonrenewable petroleum sources, as it is readily modified via chemical reaction to produce polyol and subsequently for polyurethane production. Jatropha oil (JO), [...] Read more.
The utilization of vegetable oil in the production of polymeric material has gained interest due to its proven ability to replace nonrenewable petroleum sources, as it is readily modified via chemical reaction to produce polyol and subsequently for polyurethane production. Jatropha oil (JO), a second-generation feedstock, is one of the suitable candidates for polyester polyol synthesis because it contains a high percentage of unsaturated fatty acids. In this study, jatropha-based polyester polyols (JOLs) with different hydroxyl values were successfully synthesized via a two-step method: epoxidation followed by oxirane ring-opening reaction. Ring-opening reagents; methanol, ethanol, and isopropanol were used to produce polyol with hydroxyl number of 166, 180, and 189 mg/KOH, respectively. All the synthesized JOLs exhibited a Newtonian to shear thinning behavior in the measured shear rate ranges from 10 to 1000 s−1 at 25 °C. The viscosity of a JOL ring-opened with methanol, isopropanol, and ethanol was 202, 213, and 666 mPa·s, respectively, at 20 °C and 100 s−1, which is within the range of commercially available polyols. Successively, the JOLs were reacted with isophorone diisocyanate (IPDI) to produce polyurethane prepolymer by utilizing 2,2-dimethylol propionic acid (DMPA) as an emulsifier. The prepolymer was then dispersed in water to produce a waterborne polyurethane dispersion. Colloidal stability of the jatropha-based polyurethane dispersions (JPUDs) were investigated by particle size analysis. A JPUD with a small particle size in the range of 6.39 to 43.83 nm was obtained, and the trend was associated with the soft segment of the polyol in the formulation. The zeta potentials of the JPUs ranged from −47.01 to −88.9 mV, indicating that all synthesized JPUs had high dispersity and stability. The efficient synthesis procedure, low cost, and excellent properties of the resulting product are thought to offer an opportunity to use jatropha oil as a sustainable resource for polyester polyol preparation. Full article
(This article belongs to the Special Issue Advances in Sustainable Polyurethanes)
Show Figures

Figure 1

13 pages, 4209 KiB  
Article
Partially Deacetylated and Fibrillated Shrimp Waste-Derived Chitin as Biopolymer Emulsifier for Green Cutting Fluids—Towards a Cleaner Production
by Oscar Aguilar-Rosas, Stephany Blanco, Mariana Flores, Keiko Shirai and Leonardo Israel Farfan-Cabrera
Polymers 2022, 14(3), 525; https://doi.org/10.3390/polym14030525 - 28 Jan 2022
Cited by 5 | Viewed by 3220
Abstract
Up to date, most metalworking fluids (MWFs) are emulsions made of petroleum-derived oil bases and sodium petroleum sulphonate emulsifiers. They are not readily biodegradable, and their waste is hazardous for users and the environment. Therefore, green MWFs are required for achieving cleaner production [...] Read more.
Up to date, most metalworking fluids (MWFs) are emulsions made of petroleum-derived oil bases and sodium petroleum sulphonate emulsifiers. They are not readily biodegradable, and their waste is hazardous for users and the environment. Therefore, green MWFs are required for achieving cleaner production processes. Recently, various MWFs have been developed using vegetable oil bases to meet biodegradability to some extent. However, the emulsifier has been scarcely replaced by a green product. This research aims to produce and evaluate Pickering emulsions made of Jatropha oil (JO) and partially deacetylated and fibrillated chitin (PDFC) as emulsifiers at different concentrations. JO is a non-edible biodegradable oil with remarkable lubricity properties, while PDFC is produced by extracting chitin from waste heads and shells of the shrimp species Litopenaeus vannameii, followed by partial deacetylation and further fibrillation, which improves wettability and stabilization. The prepared emulsions were characterized in terms of creaming index and size of emulsion droplets and evaluated as MWFs in actual turning operations of AISI 1018 steel bars via minimum quantity lubrication (MQL) technique. The findings suggest PDFC as a potential eco-friendly emulsifier to form green MWFs with acceptable stability generating low cutting forces and significant workpiece finishing and chips quality. Full article
Show Figures

Graphical abstract

4 pages, 487 KiB  
Proceeding Paper
In Search of a “Stable Green Nanofluid” for Applications in High Voltage Equipment
by Mohammad Zeagham, Tariq Mohammad Jadoon, Mohammad Iqbal Qureshi, Basit Qureshi and Syed Sabir
Eng. Proc. 2021, 12(1), 58; https://doi.org/10.3390/engproc2021012058 - 29 Dec 2021
Cited by 4 | Viewed by 1887
Abstract
Nanofluids are considered as the next generation of dielectric fluids due to their higher thermal conductivity and dielectric properties. In this investigation, locally produced ester oils, such as rice bran oil (RBO) and jatropha oil (JO), were compared with mineral oil (MO). Initially, [...] Read more.
Nanofluids are considered as the next generation of dielectric fluids due to their higher thermal conductivity and dielectric properties. In this investigation, locally produced ester oils, such as rice bran oil (RBO) and jatropha oil (JO), were compared with mineral oil (MO). Initially, hydrophilic SiO2 nano particles were used to prepare nanofluids using RBO and MO. However, results showed that with loading of nanoparticles (NPs) up to 0.075 g/L, the dielectric strength (DS) of MO based NFs increased but decreased drastically with further increase in loading as these suffered agglomeration and sedimentation in less than 72 h. To overcome this drawback, NPs were functionalized under plasma discharge. These efforts also did not yield many favorable results. Instead, hydrophobic fumed silica NPs grafted with hexamethyldi-siloxane (HMDS) were utilized for further study. Plasma treated NFs exhibited improved DS, as well as excellent dispersibility and stability. Full article
(This article belongs to the Proceedings of The 1st International Conference on Energy, Power and Environment)
Show Figures

Figure 1

18 pages, 6056 KiB  
Article
Structural and Rheological Properties of Nonedible Vegetable Oil-Based Resin
by Nurul Huda Mudri, Luqman Chuah Abdullah, Min Min Aung, Dayang Radiah Awang Biak and Rida Tajau
Polymers 2021, 13(15), 2490; https://doi.org/10.3390/polym13152490 - 28 Jul 2021
Cited by 8 | Viewed by 3178
Abstract
Jatropha oil-based polyol (JOL) was prepared from crude Jatropha oil via an epoxidation and hydroxylation reaction. During the isocyanation step, two different types of diisocyanates; 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI), were introduced to produce Jatropha oil-based polyurethane acrylates (JPUA). The products [...] Read more.
Jatropha oil-based polyol (JOL) was prepared from crude Jatropha oil via an epoxidation and hydroxylation reaction. During the isocyanation step, two different types of diisocyanates; 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI), were introduced to produce Jatropha oil-based polyurethane acrylates (JPUA). The products were named JPUA-TDI and JPUA-IPDI, respectively. The success of the stepwise reactions of the resins was confirmed using 1H nuclear magnetic resonance (NMR) spectroscopy to support the Fourier-transform infrared (FTIR) spectroscopy analysis that was reported in the previous study. For JPUA-TDI, the presence of a signal at 7.94 ppm evidenced the possible side reactions between urethane linkages with secondary amine that resulted in an aryl-urea group (Ar-NH-COO-). Meanwhile, the peak of 2.89 ppm was assigned to the α-position of methylene to the carbamate (-CH2NHCOO) group in the JPUA-IPDI. From the rheological study, JO and JPUA-IPDI in pure form were classified as Newtonian fluids, while JPUA-TDI showed non-Newtonian behaviour with pseudoplastic or shear thinning behaviour at room temperature. At elevated temperatures, the JO, JPUA-IPDI mixture and JPUA-TDI mixture exhibited reductions in viscosity and shear stress as the shear rate increased. The JO and JPUA-IPDI mixture maintained Newtonian fluid behaviour at all temperature ranges. Meanwhile, the JPUA-TDI mixture showed shear thickening at 25 °C and shear thinning at 40 °C, 60 °C and 80 °C. The master curve graph based on the shear rate for the JO, JPUA-TDI mixture and JPUA-IPDI mixture at 25 °C, 40 °C, 60 °C and 80 °C was developed as a fluid behaviour reference for future storage and processing conditions during the encapsulation process. The encapsulation process can be conducted to fabricate a self-healing coating based on a microcapsule triggered either by air or ultra-violet (UV) radiation. Full article
(This article belongs to the Special Issue Advanced Bio-Based Polymers and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 6215 KiB  
Article
Comparative Study of Aromatic and Cycloaliphatic Isocyanate Effects on Physico-Chemical Properties of Bio-Based Polyurethane Acrylate Coatings
by Nurul Huda Mudri, Luqman Chuah Abdullah, Min Min Aung, Mek Zah Salleh, Dayang Radiah Awang Biak and Marwah Rayung
Polymers 2020, 12(7), 1494; https://doi.org/10.3390/polym12071494 - 3 Jul 2020
Cited by 29 | Viewed by 5962
Abstract
Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene [...] Read more.
Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI) were introduced to produce JPUA-TDI and JPUA-IPDI respectively. 2,4-TDI is categorised as an aromatic isocyanate whilst IPDI is known as a cycloaliphatic isocyanate. Both JPUA-TDI and JPUA-IPDI were then end-capped by the acrylate functional group of 2-hydroxyethyl methacrylate (HEMA). The effects of that isocyanate structure were investigated for their physico, chemical and thermal properties. The changes of the functional groups during each synthesis step were monitored by FTIR analysis. The appearance of urethane peaks was observed at 1532 cm−1, 1718 cm−1 and 3369 cm−1 while acrylate peaks were detected at 815 cm−1 and 1663 cm−1 indicating that JPUA was successfully synthesised. It was found that the molar mass of JPUA-TDI was doubled compared to JPUA-IPDI. Each resin showed a similar degradation pattern analysed by thermal gravimetric analysis (TGA). For the mechanical properties, the JPUA-IPDI-based coating formulation exhibited a higher hardness value but poor adhesion compared to the JPUA-TDI-based coating formulation. Both types of jatropha-based polyurethane acrylate may potentially be used in an ultraviolet (UV) curing system specifically for clear coat surface applications to replace dependency on petroleum-based chemicals. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials)
Show Figures

Figure 1

15 pages, 1313 KiB  
Article
Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation
by Chia-Chi Chang, Syuan Teng, Min-Hao Yuan, Dar-Ren Ji, Ching-Yuan Chang, Yi-Hung Chen, Je-Lueng Shie, Chungfang Ho, Sz-Ying Tian, Cesar Augusto Andrade-Tacca, Do Van Manh, Min-Yi Tsai, Mei-Chin Chang, Yen-Hau Chen, Michael Huang and Bo-Liang Liu
Energies 2018, 11(6), 1456; https://doi.org/10.3390/en11061456 - 5 Jun 2018
Cited by 11 | Viewed by 3342
Abstract
The reduction of high acid value (AV) of inedible jatropha oil (JO) by esterification with isopropanol (IPA), which is a common alcohol solvent waste in Taiwan’s high-tech industry, was studied. The decrease of AV is beneficial for the subsequent transesterification to produce JO [...] Read more.
The reduction of high acid value (AV) of inedible jatropha oil (JO) by esterification with isopropanol (IPA), which is a common alcohol solvent waste in Taiwan’s high-tech industry, was studied. The decrease of AV is beneficial for the subsequent transesterification to produce JO biodiesel (i.e., biodiesel of fatty acid isopropyl ester (FAIE)). Acid catalyst (H2SO4) and a novel mixing/emulsion technique using ultrasound irradiation (UI) were applied to promote and facilitate the esterification process. The results showed that increased IPA/oil molar ratio (MIOE) can significantly reduce the AV, kinematic viscosity (KV), density (ρLO), and water content (MW) of esterified JO, while also providing the benefit of enhancing the yield (YF) of biodiesel of FAIE. For example, with MIOE = 5 at esterification temperature (TE) = 394.2 K (393.8–394.7 K), a reduction of AV of 99.25% with YF of 67.15% can be achieved. Free fatty acid (FFA) was reduced from 18.06 wt.% to 0.14 wt.%, indicating 17.92 wt.% out of 18.06 wt.% of FFA was esterified to FAIE. As a result, among the YF of 67.15%, 49.23% (= 67.15 wt.% deducting 17.92 wt.%) was contributed by the transesterification of triglycerides. By esterification of high FFA-containing raw JO with acid catalyst, one can not only avoid saponification, but also reduce the loading of the subsequent alkali-catalyzed transesterification. Moreover, increasing TE from 394.2 to 454.4 K further reduced AV (from 0.27 to 0.084 mg KOH/g) and MW (from 0.27 to 0.043 wt.%), but, on the other hand, it increased KV (from 14.62 to 25.2 mm2/s) and ρLO (from 901.6 to 913.3 kg/m3), while it decreased YF (from 67.15 to 25.84%). In sum, IPA was successfully used as a replacement for methanol in the esterification of JO while UI provided mixing/emulsion along with heating resulting from cavitation for the system. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

11 pages, 1307 KiB  
Article
Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil
by Yi-Yu Wang, Chia-Chi Chang, Ching-Yuan Chang, Yi-Hung Chen, Je-Lueng Shie, Min-Hao Yuan, Yen-Hau Chen, Li-Xuan Huang, Cesar Augusto Andrade-Tacca, Do Van Manh, Min-Yi Tsai and Michael Huang
Energies 2016, 9(11), 910; https://doi.org/10.3390/en9110910 - 3 Nov 2016
Cited by 3 | Viewed by 4982
Abstract
This study used thermal cracking with hydrogen (HTC) to produce bio-fuel oil (BFO) from jatropha oil (JO) and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig), retention times (tr [...] Read more.
This study used thermal cracking with hydrogen (HTC) to produce bio-fuel oil (BFO) from jatropha oil (JO) and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig), retention times (tr; 40–780 min), and set temperatures (TC; 623–683 K). By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV), iodine value, kinematic viscosity (KV), density, and heating value (HV) of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO) increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig) H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products. Full article
Show Figures

Figure 1

14 pages, 716 KiB  
Article
A New Jatropha curcas Variety (JO S2) with Improved Seed Productivity
by Chengxin Yi, Chalapathy Reddy, Kins Varghese, Thi Ngoc Ha Bui, Shilu Zhang, Manju Kallath, Binoy Kunjachen, Srinivasan Ramachandran and Yan Hong
Sustainability 2014, 6(7), 4355-4368; https://doi.org/10.3390/su6074355 - 16 Jul 2014
Cited by 27 | Viewed by 6813
Abstract
One key reason for the failure of Jatropha plantation is the use of non-improved planting materials. We present in this paper a Jatropha variety (JO S2) through selective breeding with much better seed productivity than wild accessions as proven by field trials in [...] Read more.
One key reason for the failure of Jatropha plantation is the use of non-improved planting materials. We present in this paper a Jatropha variety (JO S2) through selective breeding with much better seed productivity than wild accessions as proven by field trials in Singapore and India. In a single farm trial in Singapore for two years, a comparison was conducted with accessions from China, India, Indonesia and Africa. It was found that all traits studied like seed yield, seed kernel content, seed oil content, fatty acid composition, phosphorus content and PE content differed significantly among and within the wild accessions. Overall, JO S2 was the best performer with the highest seed yield, high oil content and low phosphorus content. On two sites in Tamil Nadu, Southern India, this Jatropha variety produced up to 2.95 ton/ha of dry seeds in the first year and up to 4.25 ton/ha of dry seeds in the second year, much better than the local variety control. We attribute its higher seed productivity to early flowering, better self-branching, more flower/fruiting bunches, more fruits per bunch and importantly, better uniformity among plants. This exemplifies that breeding has improved Jatropha seed productivity which will lead to better economics for Jatropha plantation. Full article
Back to TopTop