Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = jail

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1949 KiB  
Article
Hormone Fluctuation and Gene Expression During Early Stages of the Hickory Grafting Process
by Qiaoyu Huang, Haixia Liu, Qinyuan Shen, Huwei Yuan, Fuqiang Cui, Daoliang Yan, Wona Ding, Xiaofei Wang and Bingsong Zheng
Plants 2025, 14(14), 2229; https://doi.org/10.3390/plants14142229 - 18 Jul 2025
Viewed by 375
Abstract
Grafting involves complex hormonal interactions at graft interfaces that are not yet fully understood. In this study, we analyzed hormone fluctuations and gene expression during callus proliferation and vascular tissue differentiation in hickory (Carya cathayensis Sarg.) grafts. Cytokinin and ethylene precursor ACC [...] Read more.
Grafting involves complex hormonal interactions at graft interfaces that are not yet fully understood. In this study, we analyzed hormone fluctuations and gene expression during callus proliferation and vascular tissue differentiation in hickory (Carya cathayensis Sarg.) grafts. Cytokinin and ethylene precursor ACC levels steadily increased after grafting. The biosynthetic genes for these hormones (IPT3, ACS1, ACO1, and ACO5) exhibited heightened expression. Genes related to cytokinin signaling (RR3, ARR4, and ZFP5) and ethylene signaling (MKK9, ESE1, and ESE3) were similarly upregulated. Conversely, genes associated with jasmonic acid, abscisic acid, and strigolactone pathways were downregulated, including synthesis genes (AOC4 and AOS) and those involved in signal transduction (NAC3, WRKY51, and SMAX1). Correspondingly, JA-Ile and 5-deoxystrigol levels significantly decreased. Indole-3-acetic acid (IAA) levels also dropped during the early stages of graft union formation. These results suggest that low auxin concentrations may be essential in the initial stages after grafting to encourage callus proliferation, followed by an increase at later stages to facilitate vascular bundle differentiation. These findings imply that maintaining a balance between low auxin levels and elevated cytokinin and ethylene levels may be critical to support cell division and callus formation during the initial proliferation phase. Later, during the vascular differentiation phase, a gradual rise in auxin levels, accompanied by elevated ethylene, may facilitate the differentiation of vascular bundles in hickory grafts. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

37 pages, 9217 KiB  
Article
Permeability Jailbreak: A Deep Simulation Study of Hydraulic Fracture Cleanup in Heterogeneous Tight Gas Reservoirs
by Hamid Reza Nasriani and Mahmoud Jamiolahmady
Energies 2025, 18(14), 3618; https://doi.org/10.3390/en18143618 - 9 Jul 2025
Viewed by 290
Abstract
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. [...] Read more.
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. A novel modelling approach is applied to represent both weak and strong permeability jail phenomena in heterogeneous rock systems. A comprehensive suite of parametric simulations evaluates gas production loss (GPL) and produced fracture fluid (PFF) across varying fracture fluid volumes, shut-in times, drawdown pressures, and matrix permeabilities. The analysis leverages statistically designed experiments and response surface models to isolate the influence of rock heterogeneity and saturation-dependent flow restrictions on cleanup efficiency. The results reveal that strong jail zones drastically hinder fracture fluid recovery, while weak jail configurations interact with heterogeneity to produce non-linear cleanup trends. Notably, reducing the pore size distribution index in Pc models improves predictive accuracy for ultra-tight conditions. These findings underscore the need to integrate unconventional Kr and Pc behaviour in hydraulic fracturing design to optimise flowback and long-term gas recovery. This work provides critical insights for improving reservoir performance and supports ambitions in energy resilience and net-zero transition strategies. Full article
Show Figures

Figure 1

24 pages, 3607 KiB  
Article
Dynamics of Phytohormones in Persistent Versus Deciduous Calyx Development in Pear Revealed by Targeted Metabolomics
by Mingyang Yu, Feng Han, Nana Zhou, Lanfei Wang, Yang Li, Weifan Fan, Tianzheng Zhang and Jianping Bao
Horticulturae 2025, 11(6), 642; https://doi.org/10.3390/horticulturae11060642 - 6 Jun 2025
Viewed by 464
Abstract
To calyx persistence in Korla fragrant pear (Pyrus sinkiangensis) significantly impacts fruit marketability, with persistent calyx causing up to 40% reduction in premium-grade fruit yield. Investigating the hormonal mechanisms underlying calyx abscission and persistent in Korla Fragrant Pear, we performed comprehensive [...] Read more.
To calyx persistence in Korla fragrant pear (Pyrus sinkiangensis) significantly impacts fruit marketability, with persistent calyx causing up to 40% reduction in premium-grade fruit yield. Investigating the hormonal mechanisms underlying calyx abscission and persistent in Korla Fragrant Pear, we performed comprehensive phytohormone profiling using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; EXIONLC system coupled with SCIEX 6500 QTRAP+). Flowers from first-position (persistent-calyx) and fourth-position (deciduous-calyx) inflorescences were collected at six developmental stages (0–10 days after flowering). Fourteen endogenous hormones—ACC, ME-IAA, IPA, TZR, SA, IAA, ICA, IP, tZ, DHJA, ABA, JA-ile, cZ, and JA—were identified in the calyx during the flowering stage. The calyx abscission rate was significantly higher in the fourth position (79%) compared to the first position (32%). ACC and ABA are closely linked to abscission, with increased ACC at 0 DAF signaling early abscission and ABA accumulation accelerating late abscission at 8 DAF. Auxin exhibited spatiotemporal specificity, peaking in first-order flowers at 4–6 DAF, potentially inhibiting abscission by maintaining cell activity. Cytokinins generally decreased, while jasmonates significantly increased during the fourth-position anthesis stage 8–10 DAF, suggesting a role in stress-related senescence. By systematic analysis of the flowers at the first order (persistent calyx) and the fourth order (deciduous calyx) from 0 to 10 days after anthesis, we found three key stages of hormone regulation: early prediction stage (0–2 DAF), ACC accumulation at the fourth order was significantly higher than that at the first order at 0 days after anthesis, ACC accumulation at the early stage predicted abscission; During the middle maintenance stage (4–6 DAF), the accumulation of cytokinin decreased significantly, while the accumulation of IAA increased significantly in the first position (persistent calyx); Execution Phase (8–10 DAF), ABA reached its peak at 8 DAF, coinciding with the final separation time. JA played an important role in the late stage. Gibberellin was undetected, implying a weak association with calyx abscission. Venn diagram identified N6-(delta 2-Isopentenyl)-adenine (IP) in first-position flowers, which may influence calyx persistence or abscission. These findings elucidate hormone interactions in calyx abscission, offering a theoretical basis for optimizing exogenous hormone application to enhance fruit quality. Full article
Show Figures

Figure 1

18 pages, 2421 KiB  
Article
ELONGATED HYPOCOTYL5 Regulates Resistance to Root-Knot Nematode by Modulating Antioxidant System and Jasmonic Acid in Cucumis sativus
by Fusheng Ma, Juanqi Li, Mengwei Huang, Mengyan E, Dandan Cui, Guoxiu Wu, Shengli Li and Yang Li
Antioxidants 2025, 14(6), 679; https://doi.org/10.3390/antiox14060679 - 3 Jun 2025
Viewed by 605
Abstract
Root-knot nematodes (RKNs), specifically Meloidogyne incognita, are notoriously difficult to eliminate as endophytic nematodes, and cause severe damage to various plants. Cucumber (Cucumis sativus), which is a cash crop widely grown across the world, is often infected by RKNs. ELONGATED [...] Read more.
Root-knot nematodes (RKNs), specifically Meloidogyne incognita, are notoriously difficult to eliminate as endophytic nematodes, and cause severe damage to various plants. Cucumber (Cucumis sativus), which is a cash crop widely grown across the world, is often infected by RKNs. ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, plays a vital role in hormone, nutrient, abiotic stress, biotic stress, and oxygen species (ROS) signaling pathways. However, the involvement of HY5 in the defense against RKNs has rarely been reported. The present study initially explored the response of CsHY5 to RKNs. The results indicated that the hy5 mutant had a higher number of nematodes and galls in the root system and exhibited a higher susceptibility to RKNs compared with the wild type (WT). Particularly, the root-knot nematodes in hy5 plants completed their life cycle more quickly and produced more eggs. The activities of defense-related hormones and antioxidant enzymes were measured, and the results indicated that JA, jasmonoyl-isoleucine (JA-Ile), abscisic acid (ABA), peroxidase (POD), and ascorbate peroxidase (APX) were significantly elevated in the wild type, but were not induced or decreased in the mutant. Through transcriptome sequencing analysis and quantitative real-time PCR (qRT-PCR), it was found that when RKNs infect plants, the key genes of jasmonic acid (JA) synthesis, CsAOC and CsAOS, as well as the key gene of the antioxidant system, CsPOD, were all significantly induced. Nevertheless, this induction effect disappeared in the hy5 mutant. Generally, CsHY5 plays a role in the response of cucumber to RKNs, and its deletion increases the sensitivity of cucumber to RKNs. These results suggest that CsHY5 may affect the resistance of cucumber to RKNs by affecting antioxidant enzyme activities and hormone content. Full article
Show Figures

Figure 1

24 pages, 3958 KiB  
Article
Rare Homozygous Variants in INSR and NFXL1 Are Associated with Severe Treatment-Resistant Psychosis
by Ambreen Kanwal, Rimsha Zulfiqar, Husnain Arshad Cheema, Nauman Jabbar, Amina Iftikhar, Amina Iftikhar Butt, Sohail A. Sheikh, Jose V. Pardo and Sadaf Naz
Int. J. Mol. Sci. 2025, 26(10), 4925; https://doi.org/10.3390/ijms26104925 - 21 May 2025
Viewed by 499
Abstract
Psychosis constitutes a cardinal component of schizophrenia and affects nearly fifty percent of those with bipolar disorder. We sought to molecularly characterize psychosis segregating in consanguineous families. Participants from eight multiplex families were evaluated using standardized testing tools. DNA was subjected to exome [...] Read more.
Psychosis constitutes a cardinal component of schizophrenia and affects nearly fifty percent of those with bipolar disorder. We sought to molecularly characterize psychosis segregating in consanguineous families. Participants from eight multiplex families were evaluated using standardized testing tools. DNA was subjected to exome sequencing followed by Sanger sequencing. Effects of variants were modeled using in-silico tools, while cDNA from a patient’s blood sample was analyzed to evaluate the effect of a splice-site variant. Twelve patients in six families were diagnosed with schizophrenia, whereas four patients from two families had psychotic bipolar disorder. Two homozygous rare deleterious variants in INSR (c.2232-7T>G) and NFXL1 (c.1322G>A; p.Cys441Tyr) were identified, which segregated with severe treatment-resistant psychosis/schizophrenia in two families. There were none, or ambiguous findings in the other six families. The predicted deleterious missense variant affected a conserved amino acid, while the intronic variant was predicted to affect splicing. However, cDNA analysis from a patient’s blood sample did not reveal an aberrant transcript. Our results indicate that INSR and NFXL1 variants may have a role in psychosis that requires to be investigated further. Lack of molecular diagnosis in some patients suggests the need for genome sequencing to pinpoint the genetic causes. Full article
(This article belongs to the Special Issue Involvement of Neuroinflammatory Processes in Psychiatric Conditions)
Show Figures

Figure 1

19 pages, 1424 KiB  
Article
Jasmonates in the Ethylene-Induced Resistance of Detached Citrus Fruits to Peel Damage
by María T. Lafuente, Raúl Sampedro and Paco Romero
Int. J. Mol. Sci. 2025, 26(10), 4805; https://doi.org/10.3390/ijms26104805 - 17 May 2025
Viewed by 388
Abstract
It is known that nutrient deprivation following detachment can cause non-chilling peel pitting (NCPP) in citrus fruits when stored under a non-stressful environment and that this damage is reduced by pretreating the fruit with ethylene (ETH) (4 d, 10 µL L−1). [...] Read more.
It is known that nutrient deprivation following detachment can cause non-chilling peel pitting (NCPP) in citrus fruits when stored under a non-stressful environment and that this damage is reduced by pretreating the fruit with ethylene (ETH) (4 d, 10 µL L−1). The present work investigates the effect of this pretreatment on jasmonate (JA) accumulation and transcriptional regulation in mature Navelate oranges (Citrus sinensis L. Osbeck) stored under non-stressful conditions. ETH increased the expression of abundant genes participating in the synthesis of cis-(+)-12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and methyl jasmonate (MeJA). ETH also upregulated genes involved in jasmonoyl–isoleucine (JAIle) synthesis (CsJAR1) and decrease (CsCYP94B3 and CYP94C1), and CsSTA2, related to JA sulfation. The levels of these JA metabolites increased during fruit holding in ETH and after shifting them to air, with MeJA accumulation being especially remarkable. Overall, the beneficial effect of ETH on reducing NCPP appears to be related not only to this redirection of OPDA and JA metabolism towards the formation of JA derivatives but also to the regulation of JA signalling. Indeed, the repression of the receptor CsCOI1 and upregulation of various CsJAZs repressors caused by nutrient deprivation, together with the ETH-mediated induction of CsCOI1, CsTOPLESS, and abundant CsJAZs during long-term storage, suggests the occurrence of an ETH-enhanced negative transcriptional regulatory feedback loop in JA metabolism and signalling, by which the susceptibility of detached Navelate oranges to NCPP might be reduced. Full article
(This article belongs to the Special Issue Phytohormones: From Physiological Response to Application)
Show Figures

Figure 1

16 pages, 3313 KiB  
Article
Entomopathogenic Fungus Treatment Affects Trophic Interactions by Altering Volatile Emissions in Tomato
by Asim Munawar, Haonan Zhang, Jinyi Zhang, Xiangfen Zhang, Xiao-Xiao Shi, Xuan Chen, Zicheng Li, Xiaoli He, Jian Zhong, Zengrong Zhu, Yaqiang Zheng and Wenwu Zhou
Agronomy 2025, 15(5), 1161; https://doi.org/10.3390/agronomy15051161 - 9 May 2025
Viewed by 752
Abstract
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the [...] Read more.
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the parasitic wasp, Trichogramma chilonis. Our results demonstrate that EPF-treated plants exhibited reduced attractiveness to adult P. absoluta moths, which were actively repelled by EPF-induced VOCs. Conversely, these same plants showed enhanced recruitment of the parasitoid T. chilonis, which demonstrated positive chemotaxis toward the modified VOC profile. Chemical analysis revealed significantly elevated emissions of key VOCs in EPF-treated plants, particularly (E)-β-Caryophyllene, β-phellandrene, and α-Phellandrene. This increase is correlated with enhanced production of defense-related phytohormones, including JA, SA, and JA-Ile, which may regulate VOC biosynthesis pathways. Behavioral response studies using synthetic VOCs and electroantennogram (EAG) measurements confirmed that these EPF-induced VOCs elicited strong olfactory responses in both insect species. To summarize, EPF treatment reshapes multitrophic interactions by strategically modulating plant VOC emissions and activating defense signaling pathways in tomato plants, providing new insights for potential applications in sustainable pest management strategies. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming)
Show Figures

Figure 1

12 pages, 202 KiB  
Article
University Distance Education in Prisons as a Tool for Rehabilitation and Social Inclusion
by Gina López-Armijos and Laura Ponce de León Romero
Soc. Sci. 2025, 14(5), 277; https://doi.org/10.3390/socsci14050277 - 30 Apr 2025
Viewed by 686
Abstract
Many countries use the deprivation of liberty as a punitive strategy to ensure citizen security. Nowadays, a rehabilitative perspective has also been included to promote social inclusion. University education is a potential tool for achieving this goal. The aim of this article is [...] Read more.
Many countries use the deprivation of liberty as a punitive strategy to ensure citizen security. Nowadays, a rehabilitative perspective has also been included to promote social inclusion. University education is a potential tool for achieving this goal. The aim of this article is to gather the opinions of twenty students and ten professors concerning the realities of university education in an Ecuadorian prison. This study uses an onto-epistemological approach and concentrates on the perception of individuals, employing a qualitative methodology. The results show that these educational programs have positive effects on the students, improving their life projects, their behavior inside and outside jail, and their digital knowledge and ICT skills, reducing recidivism and promoting labor market reintegration. The conclusions suggest that university distance education is a tool for rehabilitation and social inclusion and that greater involvement is required on the part of the State, companies, and the community in general to facilitate the graduates’ labor reintegration, as well as follow-up and social support services for ex-offenders and their families. Full article
15 pages, 4838 KiB  
Article
Jasmonic Acid-Mediated Antioxidant Defense Confers Chilling Tolerance in Okra (Abelmoschus esculentus L.)
by Weixia Liu, Jielin Wang, Dan Zhu, Xiaomin Yin, Gongfu Du, Yuling Qin, Zhiyuan Zhang and Ziji Liu
Plants 2025, 14(7), 1100; https://doi.org/10.3390/plants14071100 - 2 Apr 2025
Viewed by 558
Abstract
Chilling stress inhibits the growth of okra (Abelmoschus esculentus L.), reduces its overall agricultural yield, and deteriorates fruit quality. Therefore, it is crucial to elucidate the mechanism through which okra plants respond to chilling stress. This study investigates the molecular mechanisms of [...] Read more.
Chilling stress inhibits the growth of okra (Abelmoschus esculentus L.), reduces its overall agricultural yield, and deteriorates fruit quality. Therefore, it is crucial to elucidate the mechanism through which okra plants respond to chilling stress. This study investigates the molecular mechanisms of chilling tolerance by comparing the transcriptome and metabolome of chilling-tolerant (Ae182) and chilling-sensitive (Ae171) okra varieties. We found that Ae182 exhibits higher antioxidant enzyme activities, including SOD, POD, CAT, and APX, suggesting it mitigates oxidative stress more effectively than Ae171. Metabolomics analysis revealed that Ae182 produces higher levels of jasmonic acid (JA) and JA-isoleucine (JA-Ile) under chilling stress, potentially activating genes that alleviate oxidative damage. Additionally, integrated analyses identified key transcription factors, such as AP2, BHLH, and MYB, associated with JA and chilling stress. These findings provide candidate genes for further research on chilling resistance in okra. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 1148 KiB  
Article
Influence of Plant Growth-Promoting Rhizobacteria (PGPR) Inoculation on Phenolic Content and Key Biosynthesis-Related Processes in Ocimum basilicum Under Spodoptera frugiperda Herbivory
by Jimena Sofía Palermo, Tamara Belén Palermo, Lorena del Rosario Cappellari, Gerd Ulrich Balcke, Alain Tissier, Walter Giordano and Erika Banchio
Plants 2025, 14(6), 857; https://doi.org/10.3390/plants14060857 - 10 Mar 2025
Cited by 4 | Viewed by 1173
Abstract
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress [...] Read more.
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress because it triggers a systemic resistance response in plants similar to that caused by insect herbivory. However, these interactions have typically been studied independently, which has limited the understanding of their combined effects. This study examines the effects of Bacillus amyloliquefaciens GB03 inoculation and Spodoptera frugiperda herbivory on the total phenolic contents of Ocimum basilicum. We also analyze the levels of endogenous phytohormones and the activity of phenylalanine ammonia-lyase (PAL), a crucial enzyme involved in the biosynthesis of phenolic defense-related metabolites. The results indicate that the total phenolic content significantly increased only in plants that were both inoculated by GB03 and damaged by larvae. Additionally, PAL activity showed an increase in plants that were damaged by larvae and in those subjected to the combined treatment of larval damage and inoculation with GB03. Regarding phytohormones, in plants damaged by insects, the levels of salicylic acid (SA) increased, regardless of whether they were inoculated or not, while the levels of jasmonic acid–isoleucine (JA-ile) rose in all treatments compared to the control. This study highlights the intricate relationships among beneficial microbes, herbivores, and plant defense mechanisms, emphasizing their potential impact on improving plant resilience and the production of secondary metabolites. Furthermore, understanding the independent effects of PGPR inoculation, beyond its interaction with herbivory, could provide valuable insights into its role as a sustainable alternative for enhancing plant defense responses and promoting crop productivity. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

24 pages, 9733 KiB  
Article
Harnessing Jasmonate Pathways: PgJAR1’s Impact on Ginsenoside Accumulation in Ginseng
by Ru Zhang, Chao Li, Rui Guo, Zhaoying Li and Bianling Zhang
Plants 2025, 14(6), 847; https://doi.org/10.3390/plants14060847 - 8 Mar 2025
Viewed by 898
Abstract
Ginsenosides, the most active components in Panax ginseng, exhibit pharmacological and therapeutic properties but are limited by their low abundance. Jasmonates (JAs), a class of stress-induced phytohormones, are integral in modulating plant defense responses and the biosynthesis of secondary metabolites, including ginsenosides. [...] Read more.
Ginsenosides, the most active components in Panax ginseng, exhibit pharmacological and therapeutic properties but are limited by their low abundance. Jasmonates (JAs), a class of stress-induced phytohormones, are integral in modulating plant defense responses and the biosynthesis of secondary metabolites, including ginsenosides. Jasmonoyl-isoleucine (JA-Ile), the primary bioactive JA compound, is biosynthesized by JA-Ile synthase 1 (JAR1). In this study, we cloned the 1555 bp PgJAR1 gene from ginseng roots and analyzed its structure, enzyme activity, and expression pattern. The PgJAR1 protein encompasses all the hallmark elements characteristic of the GH3 family. It exhibits N/C-terminal domains analogous to ANL, three ATP/AMP-binding motifs, and distinct secondary structures: an N-terminal beta-barrel with beta-sheets and alpha-helices, and a C-terminal beta-sheet surrounded by alpha-helices, similarly to AtGH3.11/AtJAR1. The recombinant PgJAR1 enzyme expressed in Escherichia coli BL21 specifically catalyzed jasmonic acid (JA) to JA-Ile. PgJAR1 is predominantly expressed in leaves and is upregulated by MeJA treatment. Moderate transient overexpression of PgJAR1 promoted the biosynthesis of both JA-Ile and ginsenosides, highlighting the crucial role of PgJAR1 in JA-Ile biosynthesis and its positive impact on ginsenoside accumulation. Nevertheless, elevated JA-Ile levels can impede cellular growth, reducing ginsenoside production. Consequently, balancing JA-Ile biosynthesis through PgJAR1 expression is essential for optimizing ginseng cultivation and enhancing its medicinal properties. Modulating endogenous JA-Ile levels offers a strategy for increasing ginsenoside production in ginseng plants. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 434 KiB  
Article
Examining Trauma-Related Shame and Trauma Coping Self-Efficacy as Predictors of PTSD in Women in Jail
by Shannon M. Lynch and Stephanie Kaplan
Soc. Sci. 2025, 14(1), 49; https://doi.org/10.3390/socsci14010049 - 17 Jan 2025
Viewed by 1849
Abstract
Women in jail experience high rates of exposure to interpersonal violence and PTSD. However, programming to address women’s trauma-related treatment needs in corrections facilities is limited and this population remains underserved. Research identifying treatment targets to reduce PTSD symptoms and to support recovery [...] Read more.
Women in jail experience high rates of exposure to interpersonal violence and PTSD. However, programming to address women’s trauma-related treatment needs in corrections facilities is limited and this population remains underserved. Research identifying treatment targets to reduce PTSD symptoms and to support recovery is needed. Prior research suggests trauma-related shame and coping self-efficacy are associated with PTSD symptoms in the general population. The present study aimed to expand upon the current literature by using structural equation modeling to evaluate the associations among cumulative interpersonal violence exposures, trauma coping self-efficacy (TCSE), trauma-related shame, and current PTSD symptoms in a sample of randomly selected women in jail (n = 150). Over half the sample (55%) reported clinically significant PTSD symptoms. Shame (β = 0.372, p = 0.001) and TCSE (β = −0.375, p < 0 000) significantly predicted PTSD symptoms, explaining 50% of the variance in PTSD. These findings provide preliminary direction for identification and implementation of evidence-based treatments addressing trauma-related shame and TCSE to reduce PTSD symptoms in incarcerated women. Full article
Show Figures

Figure 1

17 pages, 255 KiB  
Article
Implementation of Peer-Led Seeking Safety for Women in Jail
by Kathryn M. M. Nowotny, Danielle Lee Estes, Krystle Nicole Culbertson and Ladies Empowerment and Action Program
Soc. Sci. 2025, 14(1), 38; https://doi.org/10.3390/socsci14010038 - 14 Jan 2025
Viewed by 1256
Abstract
Women are the fastest-growing segment of the incarcerated population and experience high rates of cumulative trauma exposure, mental illness, and PTSD. The aim of this study is to assess the implementation of a peer-led Seeking Safety (an evidence-based intervention for addressing trauma and [...] Read more.
Women are the fastest-growing segment of the incarcerated population and experience high rates of cumulative trauma exposure, mental illness, and PTSD. The aim of this study is to assess the implementation of a peer-led Seeking Safety (an evidence-based intervention for addressing trauma and addiction) pilot program for women in jail. Guided by principles from community-based participatory research and cooperative inquiry, participant surveys were analyzed (secondary data) using descriptive methods (n = 60), and qualitative interviews with program facilitators were conducted and analyzed using a general inductive approach (n = 7). Peer-led Seeking Safety is feasible, acceptable, and appropriate for women in jail, with high levels of participant satisfaction. We describe several “lessons learned” related to the jail context, including structure and security processes and vicarious and retraumatization experiences among facilitators. Preventing facilitator burnout is necessary for the sustainability of the program. Future implementations of Seeking Safety in jails should consider the lessons learned in this study. Full article
49 pages, 3313 KiB  
Review
An Overview of Zika Virus and Zika Virus Induced Neuropathies
by Abdul Wahaab, Bahar E Mustafa, Muddassar Hameed, Hira Batool, Hieu Tran Nguyen Minh, Abdul Tawaab, Anam Shoaib, Jianchao Wei and Jason L. Rasgon
Int. J. Mol. Sci. 2025, 26(1), 47; https://doi.org/10.3390/ijms26010047 - 24 Dec 2024
Viewed by 4423
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of [...] Read more.
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain–Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms. Full article
Show Figures

Figure 1

16 pages, 2980 KiB  
Article
A Nucleotide-Binding Domain Leucine-Rich Repeat Gene Regulates Plant Growth and Defense Against Chewing Herbivores
by Chen Qiu, Xiaochen Jin, Yumiao Zhao, Peng Kuai and Yonggen Lou
Plants 2024, 13(23), 3275; https://doi.org/10.3390/plants13233275 - 22 Nov 2024
Viewed by 1098
Abstract
Plant nucleotide-binding leucine-rich repeat immune receptor genes (NLRs) play an important role in plant defenses against pathogens, pathogenic nematodes, and piercing–sucking herbivores. However, little is known about their functions in plant defenses against chewing herbivores. Here, we identified a plasma membrane-localized coiled-coil-type NLR [...] Read more.
Plant nucleotide-binding leucine-rich repeat immune receptor genes (NLRs) play an important role in plant defenses against pathogens, pathogenic nematodes, and piercing–sucking herbivores. However, little is known about their functions in plant defenses against chewing herbivores. Here, we identified a plasma membrane-localized coiled-coil-type NLR protein, OsPik-2-like, whose transcript levels were induced by the infestation of rice leaf folder (LF, Cnaphalocrocis medinalis) larvae, and by treatment with mechanical wounding. Knocking out OsPik-2-like in rice increased the LF-induced levels of jasmonic acid (JA) and jasmonoyl–isoleucine (JA-Ile), the activity of trypsin protease inhibitors (TrypPIs), and the basal levels of some flavonoids, which in turn decreased the performance of LF larvae. Moreover, knocking out OsPik-2-like reduced plant growth. These findings demonstrate that OsPik-2-like regulates the symbiosis between rice and LF by balancing plant growth and defense. Full article
(This article belongs to the Special Issue Plant Chemical Ecology)
Show Figures

Figure 1

Back to TopTop