Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = irrecoverable strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5520 KB  
Article
Cyclic Superelasticity, Elastocaloric Effect, and Shape Memory Effect of Solution-Treated Ti50Ni41Cu7Co2 Alloy
by Niranjan Kumar Choudhry, Da-Syuan Chou and Chih-Hsuan Chen
Materials 2025, 18(24), 5489; https://doi.org/10.3390/ma18245489 - 5 Dec 2025
Viewed by 446
Abstract
In recent years, there has been an increasing interest in studying multi-component alloys. A bulk solution-treated Ti50Ni41Cu7Co2 SMA was prepared and investigated. The functional properties, including phase transformation temperature, shape memory effect, cyclic superelasticity, and elastocaloric [...] Read more.
In recent years, there has been an increasing interest in studying multi-component alloys. A bulk solution-treated Ti50Ni41Cu7Co2 SMA was prepared and investigated. The functional properties, including phase transformation temperature, shape memory effect, cyclic superelasticity, and elastocaloric response, were systematically evaluated. The alloy exhibited a Ms temperature of around 250 K, which is beneficial for applications at room temperature. Shape memory effect with a maximum recoverable strain of 6.21% was obtained under a biased stress of 300 MPa. The superelasticity rapidly became stable during the cyclic test, reducing irrecoverable strain from 2.8% to 0.01% by the 10th cycle. After 250th superelastic cycles, the alloy exhibited a stable recoverable strain of 1.3%, and a lower critical stress for transformation (270 MPa, down from 405 MPa). The elastocaloric cooling effect reached −4.9 K at the 50th cycle and stabilized at −4.3 K thereafter. With an increase in operating temperature, the elastocaloric effect diminished and disappeared above 383 K, and the SMA retained a notable recoverable strain of ~0.5% up to 443 K. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

22 pages, 4497 KB  
Article
Experimental and Analytical Framework for Predicting Nonlinear Viscoelastic–Viscoplastic Behavior of Polymers
by Alen Oseli, Matic Šobak and Lidija Slemenik Perše
Polymers 2025, 17(23), 3095; https://doi.org/10.3390/polym17233095 - 21 Nov 2025
Viewed by 648
Abstract
The present research addresses the modeling of viscoelastic–viscoplastic behavior of polymers with a theoretical expansion of Schapery’s nonlinear viscoelastic model by incorporating two components of irrecoverable processes, displaying material flow and viscoplastic behavior (structure- and load-related irrecoverable process). The theory is accompanied by [...] Read more.
The present research addresses the modeling of viscoelastic–viscoplastic behavior of polymers with a theoretical expansion of Schapery’s nonlinear viscoelastic model by incorporating two components of irrecoverable processes, displaying material flow and viscoplastic behavior (structure- and load-related irrecoverable process). The theory is accompanied by an experimental and analytical framework for identifying model parameters. Introduced multi-scale analysis allows evaluation of pure linear and nonlinear viscoelastic, as well as viscoplastic behavior, enabling the study of their contribution to overall material response. Model performance was examined with creep recovery tests on two versatile and well-established thermoplastic polymers with different morphological structures: amorphous ABS exhibiting notable flow and semi-crystalline POM, where flow may be neglected. Results show extremely accurate predictions and exceptional agreement with experimental data, as the error was found to be less than 5% ranging from infinitesimally small to relatively high loading magnitudes (from 0.1 to 15 MPa of shear stress) at 70 °C (maximum operating temperature). Notably, viscoplastic strains were detected even within linear viscoelastic domain, suggesting that these effects are not related to yield phenomena (associated with progressive/damaging mechanisms), but rather provide an explanation for the material’s inability to fully recover. With its predictive capability and adaptability, the model demonstrates to be a powerful tool for capturing realistic material responses not only for the considered but also applicable to other molecular systems. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

16 pages, 5770 KB  
Article
Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys
by Li-Wei Tseng and Wei-Cheng Chen
Materials 2025, 18(12), 2842; https://doi.org/10.3390/ma18122842 - 16 Jun 2025
Viewed by 781
Abstract
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission [...] Read more.
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission electron microscope (TEM). The TEM results reveal that the average precipitate size is around 3–5 nm in the 600 °C/24 h samples, 6–8 nm in the 600 °C/48 h samples, and 10–12 nm in the 600 °C/72 h samples. The results indicate that precipitate size increases as aging time increases from 24 to 72 h. EDS analysis results show decreased Fe and increased Ni when the analyzed line crosses the precipitate region. The diffraction pattern results show that the precipitate has an L12 crystal structure. The thermo-magnetization curves of single crystals under the three aging conditions (600 °C/24 h, 600 °C/48 h, and 600 °C/72 h) show that the values of the transformation temperatures increased from 24 to 72 h. Magnetization was saturated at 140 emu/g under the magnetic field of 7 Tesla. When increasing the magnetic field from 0.05 to 7 Tesla, the transformation temperatures rose. The results indicate that magnetic fields can activate martensitic transformation. From the results of the superelasticity test at room temperature, [001]-oriented FeNiCoAlTiNb single crystals aged at 600 °C for 24, 48, and 72 h presented recoverable strains of 3%, 5.1%, and 2.6%, respectively. Digital image correlation (DIC) results of the aged samples show that two martensite variants were activated during the superelasticity test. The two variants form corresponding variant pairs (CVPs) and improve the recoverable strain of superelasticity. Although maximum recoverable strain was obtained for the 600 °C/48 h samples, the samples show poor cyclic stability at room temperature after applying the 6% strain. According to the DIC results, the retained martensite, which is pinned by dislocations, was observed after the test. The irrecoverable strain was attributed to the residual martensite. For the 600 °C/72 h samples, the large size of the precipitates poses an obstacle to dislocation transformation and formation. The dislocations increase the stress hysteresis width and stabilize the martensite, causing poor recoverability. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

19 pages, 10283 KB  
Article
Effect of Phase Structure on the Properties of Additively Manufactured NiTi Alloy Based on Molecular Dynamics Simulation
by Tianxiang Zhao, Jiankang Huang, Huayu Zhao, Rui Xiang, Xueping Song and Ding Fan
Metals 2025, 15(4), 411; https://doi.org/10.3390/met15040411 - 5 Apr 2025
Viewed by 959
Abstract
NiTi alloy has been widely used due to its excellent shape memory effect, superelasticity, and high damping performance. These excellent properties are mainly derived from its unique phase structure. In order to further explore the effect of different phase ratios on the performance [...] Read more.
NiTi alloy has been widely used due to its excellent shape memory effect, superelasticity, and high damping performance. These excellent properties are mainly derived from its unique phase structure. In order to further explore the effect of different phase ratios on the performance of NiTi alloy, this study successfully prepared NiTi alloys with different atomic ratios by controlling the wire feeding speed to control the atomic ratio in the alloy. The results of TEM showed that the alloy with a lower Ni atomic ratio is enriched with Ti element, while the alloy with a higher Ni atomic ratio has a coexistence of NiTi phase and NiTi2 phase. At the same time, the compression performance showed that the increase in Ni atomic ratio can improve the compression performance of the alloy. In addition, by constructing a molecular dynamics model of NiTi alloys with different phase ratios, the unloading recovery behavior and phase transformation characteristics of the alloy under external force were analyzed. The results showed that with the increase of the NiTi2 phase ratio in the alloy, the irrecoverable strain also increases, exceeding the elastic strain limit of the NiTi2 phase, resulting in the generation of disordered structure and plastic deformation in the late deformation stage. In addition, with the increase of the NiTi2 phase ratio, the energy dissipation area of the hysteresis curve increases, reflecting a greater energy loss. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics Analysis of Metallic Material)
Show Figures

Figure 1

14 pages, 29079 KB  
Article
Molecular Dynamics Investigation on Grain Size-Dependent Superelastic Behavior of CuZr Shape Memory Alloys
by Mixun Zhu, Kai Wang, Hongtao Zhong, Huahuai Shen, Yong Zhang, Xiaoling Fu and Yuanzheng Yang
Metals 2025, 15(2), 142; https://doi.org/10.3390/met15020142 - 29 Jan 2025
Viewed by 1637
Abstract
The superelasticity of CuZr shape memory alloys (SMAs) originates from stress-induced transformations between the B2 (austenite) and B19’ (martensite) phases. Grain size is a key parameter affecting the superelasticity of shape memory alloys. Previous studies on NiTi, Fe-based, and Cu-based SMAs confirm that [...] Read more.
The superelasticity of CuZr shape memory alloys (SMAs) originates from stress-induced transformations between the B2 (austenite) and B19’ (martensite) phases. Grain size is a key parameter affecting the superelasticity of shape memory alloys. Previous studies on NiTi, Fe-based, and Cu-based SMAs confirm that altering grain size effectively regulates superelasticity. Current research on the influence of grain size on the superelasticity of CuZr shape memory alloys (SMAs) is relatively sparse. This study employs molecular dynamics simulations to evaluate the effect of grain size on the superelasticity of CuZr SMAs through uniaxial loading–unloading tests. Polycrystalline samples with grain sizes of 6.59 nm, 5 nm, and 4 nm were analyzed. The results indicate that reducing grain size can decrease the irrecoverable strain, thereby enhancing superelasticity. The improvement in superelasticity is attributed to a higher recovery rate of the martensite-to-austenite transformation, allowing more plastic deformation within the grain interior to recover during unloading, and thereby reducing the irrecoverable strain. The recovery rate of the martensite-to-austenite transformation is closely related to the elastic strain energy accumulated within the grain interior during loading. Full article
Show Figures

Figure 1

14 pages, 9731 KB  
Article
Superelastic Properties of Aged FeNiCoAlTaB Cold-Rolled Shape Memory Alloys
by Li-Wei Tseng, Miao Song, Wei-Cheng Chen, Yi-Ting Hsu and Chih-Hsuan Chen
Metals 2024, 14(6), 643; https://doi.org/10.3390/met14060643 - 28 May 2024
Cited by 3 | Viewed by 1630
Abstract
In the present study, microstructure and cyclic tensile tests were used to measure the superelastic responses of Fe40.95Ni28Co17Al11.5Ta2.5B0.05 (at.%) shape memory alloys after 97% cold rolling. Cold-rolled samples underwent annealing heat treatment [...] Read more.
In the present study, microstructure and cyclic tensile tests were used to measure the superelastic responses of Fe40.95Ni28Co17Al11.5Ta2.5B0.05 (at.%) shape memory alloys after 97% cold rolling. Cold-rolled samples underwent annealing heat treatment (1250 °C/1 h) followed by quenching in water or aging heat treatment (700 °C/6 h and 700 °C/12 h) followed by quenching in water. The microstructure results showed that the average grain size increased from 210 μm to 1570 μm as annealing times increased from 0.5 h to 1 h. X-ray diffraction (XRD) spectra for FeNiCoAlTaB (NCATB) showed that in cold-rolled alloys after solution, the strong peak was in the face-centered cubic (γ, FCC) <111> structure. In aged samples, a new peak (γ’, FCC) emerged, the intensity of which increased as aging times rose from 6 to 12 h. Transmission electron microscope (TEM) images showed that the average precipitate size was around 10 nm in 700 °C/6 h specimens and 18 nm in 700 °C/12 h specimens. The precipitate was enriched in Ni, Al, and Ta elements and exhibited an L12 crystal structure. Tensile samples aged at 700 °C for 6 and 12 h exhibited recoverable strains of 1% and 2.6%, respectively, at room temperature. Digital image correlation (DIC) results for the sample aged at 700 °C for 12 h showed that two martensite variants were activated during the superelastic test. Such variants can form corresponding variant pairs (CVPs), which promote tensile deformation. The tensile sample exhibited a gradual cyclic degradation, and a large irrecoverable strain was observed after the test. This irrecoverable strain was the result of residual martensite, which was pinned by dislocations. Full article
(This article belongs to the Special Issue Feature Papers in Metallic Functional Materials)
Show Figures

Figure 1

17 pages, 3940 KB  
Article
Energy Storage and Dissipation in Consecutive Tensile Load-Unload Cycles of Gum Metal
by Karol Marek Golasiński, Maria Staszczak and Elżbieta Alicja Pieczyska
Materials 2023, 16(9), 3288; https://doi.org/10.3390/ma16093288 - 22 Apr 2023
Cited by 11 | Viewed by 2590
Abstract
Multifunctional β-titanium alloy Gum Metal, characterized by a relatively low elastic modulus, superelastic-like behavior and high strength, was subjected to cyclic tensile loadings. The characteristics of macroscopic scale energy storage and dissipation in the consecutive loading–unloading cycles were studied. Various kinds of energy [...] Read more.
Multifunctional β-titanium alloy Gum Metal, characterized by a relatively low elastic modulus, superelastic-like behavior and high strength, was subjected to cyclic tensile loadings. The characteristics of macroscopic scale energy storage and dissipation in the consecutive loading–unloading cycles were studied. Various kinds of energy components related to the alloy deformation process were determined experimentally and analyzed using thermodynamic relations. The values of the entire work needed to deform the alloy Wext, the work used for recoverable deformation Wrec consisting of the elastic deformation energy Wel , the superelastic-like energy Wpt , and the energy of thermoelastic effect Eth , were derived from the Gum Metal stress and temperature vs. strain curves. The irrecoverable mechanical energy Wir expended on plastic deformation, the dissipation energy Q, and finally the stored energy Es  were estimated. The stored energy represents a change in the internal energy of the deformed material and is an essential measure of cold-worked state. The Es value turned out to be not large for the Gum Metal, which confirms the alloy low hardening property. The energy components determined for each of the 24 loading cycles enabled us to analyze various stages of the Gum Metal deformation process, including necking and damage. Full article
Show Figures

Figure 1

15 pages, 2904 KB  
Article
Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading
by Xingkai Wang, Leibo Song, Caichu Xia, Guansheng Han and Zheming Zhu
Sustainability 2021, 13(22), 12376; https://doi.org/10.3390/su132212376 - 9 Nov 2021
Cited by 20 | Viewed by 2689
Abstract
For many rock engineering projects, the stress of surrounding rocks is constantly increasing and decreasing during excavating progress and the long-term operation stage. Herein, the triaxial creep behavior of dolomitic limestone subjected to cyclic incremental loading and unloading was probed using an advanced [...] Read more.
For many rock engineering projects, the stress of surrounding rocks is constantly increasing and decreasing during excavating progress and the long-term operation stage. Herein, the triaxial creep behavior of dolomitic limestone subjected to cyclic incremental loading and unloading was probed using an advanced rock mechanics testing system (i.e., MTS815.04). Then, the instantaneous elastic strain, instantaneous plastic strain, visco-elastic strain, and visco-plastic strain components were separated from the total strain curve, and evolutions of these different types of strain with deviatoric stress increment were analyzed. Furthermore, a damage variable considering the proportion of irrecoverable plastic strain to the total strain was introduced, and a new nonlinear multi-element creep model was established by connecting the newly proposed damage viscous body in series with the Hookean substance, St. Venant body, and Kelvin element. The parameters of this new model were analyzed. The findings are listed as follows: (1) When the deviatoric stress is not more than 75% of the compressive strength, only instantaneous deformation, transient creep, and steady-state creep deformation occur, rock deformation is mainly characterized by the instantaneous strain, whereas the irrecoverable instantaneous plastic strain accounts for 38.02–60.27% of the total instantaneous strain; (2) Greater deviatoric stress corresponds to more obvious creep deformation. The visco-elastic strain increases linearly with the increase of deviatoric stress, especially the irrecoverable visco-plastic strain increases exponentially with deviatoric stress increment, and finally leads to accelerated creep and delayed failure of the sample; (3) Based on the experimental data, the proposed nonlinear creep model is verified to describe the full creep stage perfectly, particularly the tertiary creep stage. These results could deepen our understanding of the elasto-visco-plastic deformation behavior of dolomitic limestone and have theoretical and practical significance for the safe excavation and long-term stability of underground rock engineering. Full article
(This article belongs to the Special Issue Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

17 pages, 6341 KB  
Article
Comparison Study on the Performance of a Novel and Traditional Energy Piles by Laboratory Tests
by Xiaohua Bao, Xuedong Qi, Hongzhi Cui, Jinping Zou and Xiong Xiao
Symmetry 2021, 13(10), 1958; https://doi.org/10.3390/sym13101958 - 18 Oct 2021
Cited by 13 | Viewed by 3001
Abstract
Phase change material (PCM) is a substance that can absorb or release sufficient latent heat at phase transition. By encapsulating phase change paraffin in hollow steel balls in the concrete, an energy pile with PCM was innovatively produced to improve energy efficiency for [...] Read more.
Phase change material (PCM) is a substance that can absorb or release sufficient latent heat at phase transition. By encapsulating phase change paraffin in hollow steel balls in the concrete, an energy pile with PCM was innovatively produced to improve energy efficiency for the ground heat pumping system. Laboratory tests were carried out on both PCM energy pile and traditional concrete pile to evaluate the thermo mechanical performance. Two piles were heated and cooled through inside tubes at a constant flow rate. The laboratory tests on the two piles were symmetrical for the two horizontal directions in geometry, and heat transfer process follows conservation laws of energy. The temperature response of the pile and soil, internal strain, pile displacement, pore pressure, and soil pressure under heating-cooling cycles were examined. Compared with the traditional concrete pile, the PCM energy pile can effectively reduce the surrounding soil temperature. The use of PCM in the pile can improve the capacity of heat storage and make the pile more effective in heat exchange. Non-uniform thermal strain and accumulations of heat and irrecoverable displacement were observed in the repeated heating-cooling process. The study can provide references for the practical implication of PCM energy piles. Full article
Show Figures

Figure 1

20 pages, 5186 KB  
Article
Laboratory Investigation of Carbon Black/Bio-Oil Composite Modified Asphalt
by Ping Zhang, Lan Ouyang, Lvzhen Yang, Yi Yang, Guofeng Lu and Tuo Huang
Materials 2021, 14(17), 4910; https://doi.org/10.3390/ma14174910 - 29 Aug 2021
Cited by 9 | Viewed by 2460
Abstract
As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing [...] Read more.
As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development. Full article
Show Figures

Figure 1

21 pages, 2757 KB  
Review
TiPd- and TiPt-Based High-Temperature Shape Memory Alloys: A Review on Recent Advances
by Yoko Yamabe-Mitarai
Metals 2020, 10(11), 1531; https://doi.org/10.3390/met10111531 - 18 Nov 2020
Cited by 32 | Viewed by 5335
Abstract
In this paper high-temperature shape memory alloys based on TiPd and TiPt are reviewed. The effect of the alloying elements in ternary TiPd and TiPt alloys on phase transformation and strain recovery is also discussed. Generally, the addition of alloying elements decreases the [...] Read more.
In this paper high-temperature shape memory alloys based on TiPd and TiPt are reviewed. The effect of the alloying elements in ternary TiPd and TiPt alloys on phase transformation and strain recovery is also discussed. Generally, the addition of alloying elements decreases the martensitic transformation temperature and improves the strength of the martensite and austenite phases. Additionally, it also decreases irrecoverable strain, but without perfect recovery due to plastic deformation. With the aim to improve the strength of high-temperature shape memory alloys, multi-component alloys, including medium- and high-entropy alloys, have been investigated and proposed as new structural materials. Notably, it was discovered that the martensitic transformation temperature could be controlled through a combination of the constituent elements and alloys with high austenite finish temperatures above 500 °C. The irrecoverable strain decreased in the multi-component alloys compared with the ternary alloys. The repeated thermal cyclic test was effective toward obtaining perfect strain recoveries in multi-component alloys, which could be good candidates for high-temperature shape memory alloys. Full article
(This article belongs to the Special Issue Shape Memory Alloys 2020)
Show Figures

Figure 1

16 pages, 5261 KB  
Article
Thermal Cyclic Properties of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys
by Wataru Tasaki, Masayuki Shimojo and Yoko Yamabe-Mitarai
Crystals 2019, 9(11), 595; https://doi.org/10.3390/cryst9110595 - 14 Nov 2019
Cited by 7 | Viewed by 3286
Abstract
In this study, the thermal cyclic properties of Ti-(50−x)Pd-xPt-5Zr alloys (x = 5, 15, 25, at%), comprising B2 and B19 structures in austenite and martensite, were investigated by a thermal cyclic compression test under a constant load of between 15 and 200 MPa. [...] Read more.
In this study, the thermal cyclic properties of Ti-(50−x)Pd-xPt-5Zr alloys (x = 5, 15, 25, at%), comprising B2 and B19 structures in austenite and martensite, were investigated by a thermal cyclic compression test under a constant load of between 15 and 200 MPa. The transformation temperature measured using differential scanning calorimetry increased with increasing Pt concentration. The highest austenite finishing (Af) temperature, 648 °C, was obtained in the Ti-25Pd-25Pt-5Zr alloy. Irrecoverable strain due to thermal cyclic testing was observed during each test, even at a stress of 50 MPa. The work output, calculated as the product of the transformation strain and the applied stress from strain–temperature curves, decreased with increasing Pt concentration. This was because of the lower strength of the austenite phase due to Af increasing with an increase in the concentration of Pt. Although irrecoverable strain was observed with the first thermal cycle test, it decreased after several thermal cyclic tests, which are called training. Full article
(This article belongs to the Special Issue Advanced High Temperature Shape Memory Alloys)
Show Figures

Graphical abstract

20 pages, 4862 KB  
Article
Potent Antitrypanosomal Activities of 3-Aminosteroids against African Trypanosomes: Investigation of Cellular Effects and of Cross-Resistance with Existing Drugs
by Charles O. Nnadi, Godwin U. Ebiloma, Jennifer A. Black, Ngozi J. Nwodo, Leandro Lemgruber, Thomas J. Schmidt and Harry P. de Koning
Molecules 2019, 24(2), 268; https://doi.org/10.3390/molecules24020268 - 12 Jan 2019
Cited by 16 | Viewed by 5702
Abstract
Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of [...] Read more.
Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of selected compounds of this series against T. congolense (Savannah-type, IL3000), T. b. brucei (bloodstream trypomastigote, Lister strain 427 wild-type (427WT)) and various multi-drug resistant cell lines was assessed using a resazurin-based cell viability assay. Studies on mode of antitrypanosomal activity of some selected 3-aminosteroids against Tbb 427WT were also carried out. The tested compounds mostly showed moderate-to-low in vitro activities and low selectivity to mammalian cells. Interestingly, a certain aminosteroid, holarrhetine (10, IC50 = 0.045 ± 0.03 µM), was 2 times more potent against T. congolense than the standard veterinary drug, diminazene aceturate, and 10 times more potent than the control trypanocide, pentamidine, and displayed an excellent in vitro selectivity index of 2130 over L6 myoblasts. All multi-drug resistant strains of T. b. brucei tested were not significantly cross-resistant with the purified compounds. The growth pattern of Tbb 427WT on long and limited exposure time revealed gradual but irrecoverable growth arrest at ≥ IC50 concentrations of 3-aminosteroids. Trypanocidal action was not associated with membrane permeabilization of trypanosome cells but instead with mitochondrial membrane depolarization, reduced adenosine triphosphate (ATP) levels and G2/M cell cycle arrest which appear to be the result of mitochondrial accumulation of the aminosteroids. These findings provided insights for further development of this new and promising class of trypanocide against African trypanosomes. Full article
Show Figures

Figure 1

Back to TopTop