Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = iron-sulfur-reducing bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5427 KiB  
Article
Biogenic Sulfide-Mediated Iron Reduction at Low pH
by Caryl Ann Becerra, Brendan Murphy, Brittnee V. Veldman and Klaus Nüsslein
Microorganisms 2024, 12(10), 1939; https://doi.org/10.3390/microorganisms12101939 - 25 Sep 2024
Viewed by 1167
Abstract
Acid mine drainage (AMD) pollutes natural waters, but some impacted systems show natural attenuation. We sought to identify the biogeochemical mechanisms responsible for the natural attenuation of AMD. We hypothesized that biogenic sulfide-mediated iron reduction is one mechanism and tested this in an [...] Read more.
Acid mine drainage (AMD) pollutes natural waters, but some impacted systems show natural attenuation. We sought to identify the biogeochemical mechanisms responsible for the natural attenuation of AMD. We hypothesized that biogenic sulfide-mediated iron reduction is one mechanism and tested this in an experimental model system. We found sulfate reduction occurred under acidic conditions and identified a suite of sulfate-reducing bacteria (SRB) belonging to the groups Desulfotomaculum, Desulfobacter, Desulfovibrio, and Desulfobulbus. Iron reduction was not detected in microcosms when iron-reducing bacteria or SRB were selectively inhibited. SRB also did not reduce iron enzymatically. Rather, the biogenic sulfide produced by SRB was found to be responsible for the reduction of iron at low pH. Addition of organic substrates and nutrients stimulated iron reduction and increased the pH. X-ray diffraction and an electron microprobe analysis revealed that the polycrystalline, black precipitate from SRB bioactive samples exhibited a greater diversity of iron chalcogenide minerals with reduced iron oxidation states, and minerals incorporating multiple metals compared to abiotic controls. The implication of this study is that iron reduction mediated by biogenic sulfide may be more significant than previously thought in acidic environments. This study not only describes an additional mechanism by which SRB attenuate AMD, which has practical implications for AMD-impacted sites, but also provides a link between the biogeochemical cycling of iron and sulfur. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

36 pages, 8562 KiB  
Article
Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer
by Valentina Gonzalez, Josefina Abarca-Hurtado, Alejandra Arancibia, Fernanda Claverías, Miguel R. Guevara and Roberto Orellana
Microorganisms 2024, 12(9), 1796; https://doi.org/10.3390/microorganisms12091796 - 29 Aug 2024
Cited by 2 | Viewed by 2042
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements [...] Read more.
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron–sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling. Full article
Show Figures

Figure 1

15 pages, 938 KiB  
Article
Remediation of Sulfides in Produced Waters of the Oil and Gas Industry Using Hydrogen Peroxide
by Samantha Schovan, Grant McEachern, Alexandria Seeger, Victor V. Nguyen, Bobby Burkes, Amitava Adhikary and Linda E. Schweitzer
Water 2024, 16(14), 1987; https://doi.org/10.3390/w16141987 - 13 Jul 2024
Cited by 1 | Viewed by 1882
Abstract
Produced waters are often treated in open lagoons where hydrogen sulfide (H2S) can off gas, posing a risk to human health and the environment. The aim of this study was to optimize a treatment process using hydrogen peroxide (H2O [...] Read more.
Produced waters are often treated in open lagoons where hydrogen sulfide (H2S) can off gas, posing a risk to human health and the environment. The aim of this study was to optimize a treatment process using hydrogen peroxide (H2O2) to oxidize H2S while minimizing off gassing. Samples of produced water from West Texas and laboratory-prepared waters utilizing sodium sulfide (Na2S) or biogenic polysulfides were oxidized with H2O2 alone or in combination with copper or iron catalysts, sodium hydroxide (NaOH), or a commercial sulfide oxidizer, HydroPower Green™. Sulfur speciation was measured using Hach test kits for sulfide/sulfate/sulfite and Dräger tubes for headspace H2S. HydroPower Green™ (HPG) helped to reduce H2S in the headspace of water samples; some of this was pH related as NaOH also worked, but not as well as HPG. The dose of peroxide necessary to oxidize sulfides to sulfate is a function of the oxidation-reduction potential (Eh) of the water and total sulfide concentration as well as pH; approximately a 1–4:1 ratio of peroxide to sulfide concentration was needed to oxidize sulfidic waters of pH 7–10 with half-lives under 30 min. Both copper and iron catalysts reduce H2O2 demand and the half-life of H2S. Peracetic acid (PAA) and copper (II) sulfate pentahydrate (CuSO4, 5H2O) were explored as biocides for controlling sulfate-reducing bacteria (SRBs) that produce H2S. An AquaSnap (Hygenia) test kit was employed to monitor relative microbial activity in a wetland porewater containing H2S. Microbial regrowth occurred after a few days using the highest dose of PAA; these results showed that PAA was being used by bacteria as a carbon source even after the initial substantial reduction in the microbial activity. CuSO4, 5H2O at a dose of 1 ppm prevented microbial regrowth. The recommended treatment process from this research is determined by jar testing with H2O2, a base for pH control, a biocide, and possibly a metal catalyst or other co-oxidants in order to achieve oxidation of sulfides without H2S release or the precipitation of metal carbonates or oxides. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 3847 KiB  
Article
Diversity, Methane Oxidation Activity, and Metabolic Potential of Microbial Communities in Terrestrial Mud Volcanos of the Taman Peninsula
by Alexander I. Slobodkin, Igor I. Rusanov, Galina B. Slobodkina, Aleksandra R. Stroeva, Nikolay A. Chernyh, Nikolai V. Pimenov and Alexander Y. Merkel
Microorganisms 2024, 12(7), 1349; https://doi.org/10.3390/microorganisms12071349 - 1 Jul 2024
Cited by 2 | Viewed by 1676
Abstract
Microbial communities of terrestrial mud volcanoes are involved in aerobic and anaerobic methane oxidation, but the biological mechanisms of these processes are still understudied. We have investigated the taxonomic composition, rates of methane oxidation, and metabolic potential of microbial communities in five mud [...] Read more.
Microbial communities of terrestrial mud volcanoes are involved in aerobic and anaerobic methane oxidation, but the biological mechanisms of these processes are still understudied. We have investigated the taxonomic composition, rates of methane oxidation, and metabolic potential of microbial communities in five mud volcanoes of the Taman Peninsula, Russia. Methane oxidation rates measured by the radiotracer technique varied from 2.0 to 460 nmol CH4 cm−3 day−1 in different mud samples. This is the first measurement of high activity of microbial methane oxidation in terrestrial mud volcanos. 16S rRNA gene amplicon sequencing has shown that Bacteria accounted for 65–99% of prokaryotic diversity in all samples. The most abundant phyla were Pseudomonadota, Desulfobacterota, and Halobacterota. A total of 32 prokaryotic genera, which include methanotrophs, sulfur or iron reducers, and facultative anaerobes with broad metabolic capabilities, were detected in relative abundance >5%. The most highly represented genus of aerobic methanotrophs was Methyloprofundus reaching 36%. The most numerous group of anaerobic methanotrophs was ANME-2a-b (Ca. Methanocomedenaceae), identified in 60% of the samples and attaining relative abundance of 54%. The analysis of the metagenome-assembled genomes of a community with high methane oxidation rate indicates the importance of CO2 fixation, Fe(III) and nitrate reduction, and sulfide oxidation. This study expands current knowledge on the occurrence, distribution, and activity of microorganisms associated with methane cycle in terrestrial mud volcanoes. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 3110 KiB  
Article
Enhanced Effect of Phytoextraction on Arsenic-Contaminated Soil by Microbial Reduction
by Yuxin Zhao, Jian Cao and Pan Chen
Appl. Sci. 2023, 13(19), 10921; https://doi.org/10.3390/app131910921 - 2 Oct 2023
Cited by 2 | Viewed by 2356
Abstract
The gradually increasing presence of arsenic, a highly toxic heavy metal, poses a significant threat to both soil environmental safety and human health. Pteris vittata has long been recognized as an efficient hyperaccumulator plant for arsenic pollution. However, the pattern of arsenic accumulation [...] Read more.
The gradually increasing presence of arsenic, a highly toxic heavy metal, poses a significant threat to both soil environmental safety and human health. Pteris vittata has long been recognized as an efficient hyperaccumulator plant for arsenic pollution. However, the pattern of arsenic accumulation in soil impacts its bioavailability and restricts the extraction efficiency of Pteris vittata. To address this issue, microorganisms have the potential to improve the arsenic accumulation efficiency of Pteris vittata. In this work, we employed anthropogenic enrichment methods to extract functional iron–sulfur-reducing bacteria from soil as a raw material. These bacteria were then utilized to assist Pteris vittata in the phytoremediation of arsenic-contaminated soil. Furthermore, the utilization of organic fertilizer produced from fermented crop straw significantly boosted the remediation effect. This led to an increase in the accumulation efficiency of arsenic by Pteris vittata by 87.56%, while simultaneously reducing the content of available arsenic in the soil by 98.36%. Finally, the experimental phenomena were studied through a soil-microbial batch leaching test and plant potting test. And the mechanism of the microorganism-catalyzed soil iron–sulfur geochemical cycle on arsenic release and transformation in soil as well as the extraction effect of Pteris vittata were systematically investigated using ICP, BCR sequential extraction and XPS analysis. The results demonstrated that using iron–sulfur-reducing microorganisms to enhance the phytoremediation effect is an effective strategy in the field of ecological restoration. Full article
(This article belongs to the Special Issue Heavy Metals in Soil: Pollution, Remediation and Ecological Risks)
Show Figures

Figure 1

15 pages, 3039 KiB  
Article
The Radical SAM Heme Synthase AhbD from Methanosarcina barkeri Contains Two Auxiliary [4Fe-4S] Clusters
by Isabelle Fix, Lorenz Heidinger, Thorsten Friedrich and Gunhild Layer
Biomolecules 2023, 13(8), 1268; https://doi.org/10.3390/biom13081268 - 18 Aug 2023
Cited by 2 | Viewed by 1795
Abstract
In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical [...] Read more.
In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron–sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron–sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer. Full article
(This article belongs to the Special Issue Unraveling Mysteries of Heme Metabolism)
Show Figures

Graphical abstract

12 pages, 2094 KiB  
Article
Biocorrosion of Carbon Steel under Controlled Laboratory Conditions
by Francisco Córdoba and Aguasanta M. Sarmiento
Minerals 2023, 13(5), 598; https://doi.org/10.3390/min13050598 - 26 Apr 2023
Cited by 1 | Viewed by 1813
Abstract
In the Iberian Pyritic Belt (SW Europe), Acid Mine Drainage (AMD) is the consequence of the interaction of physical-chemical and biological factors, where aerobic Fe and/or S oxidizing chemolithotrophic and anaerobic sulfate reducing bacteria play an essential role. As a result, the polluted [...] Read more.
In the Iberian Pyritic Belt (SW Europe), Acid Mine Drainage (AMD) is the consequence of the interaction of physical-chemical and biological factors, where aerobic Fe and/or S oxidizing chemolithotrophic and anaerobic sulfate reducing bacteria play an essential role. As a result, the polluted waters are highly acidic (pH 2–3) and contain numerous dissolved or suspended metals, which gives them a powerful corrosive action on constructions related to mining activities with high economic losses. To verify the role of bacteria in the corrosion of carbon steel, a common material in buildings exposed to corrosion in acidic waters, several experiments have been carried out under controlled conditions using carbon steel bars and acidic water containing bacteria consortia from an AMD river of the Iberian Pyritic Belt. In all the experiments carried out, a remarkable oxidation of supplemented iron was observed in the presence of bacteria. Using carbon steel as the sole iron source, we observed a slight corrosion of the bars, but when culture media was supplemented with elemental sulfur, steel bars was severely damaged. Since the bacteria inoculum come from the surface water, well oxygenated, nutrient-poor river, the obtained results are discussed based on facultative metabolism of acidophilic chemolithotrophic bacteria. Full article
Show Figures

Figure 1

22 pages, 2893 KiB  
Article
Attenuation of In Vitro and In Vivo Virulence Is Associated with Repression of Gene Expression of AIG1 Gene in Entamoeba histolytica
by Janeth Lozano-Mendoza, Fátima Ramírez-Montiel, Ángeles Rangel-Serrano, Itzel Páramo-Pérez, Claudia Leticia Mendoza-Macías, Faridi Saavedra-Salazar, Bernardo Franco, Naurú Vargas-Maya, Ghulam Jeelani, Yumiko Saito-Nakano, Fernando Anaya-Velázquez, Tomoyoshi Nozaki and Felipe Padilla-Vaca
Pathogens 2023, 12(3), 489; https://doi.org/10.3390/pathogens12030489 - 21 Mar 2023
Cited by 7 | Viewed by 2869
Abstract
Entamoeba histolytica virulence results from complex host–parasite interactions implicating multiple amoebic components (e.g., Gal/GalNAc lectin, cysteine proteinases, and amoebapores) and host factors (microbiota and immune response). UG10 is a strain derived from E. histolytica virulent HM-1:IMSS strain that has lost its virulence in [...] Read more.
Entamoeba histolytica virulence results from complex host–parasite interactions implicating multiple amoebic components (e.g., Gal/GalNAc lectin, cysteine proteinases, and amoebapores) and host factors (microbiota and immune response). UG10 is a strain derived from E. histolytica virulent HM-1:IMSS strain that has lost its virulence in vitro and in vivo as determined by a decrease of hemolytic, cytopathic, and cytotoxic activities, increased susceptibility to human complement, and its inability to form liver abscesses in hamsters. We compared the transcriptome of nonvirulent UG10 and its parental HM-1:IMSS strain. No differences in gene expression of the classical virulence factors were observed. Genes downregulated in the UG10 trophozoites encode for proteins that belong to small GTPases, such as Rab and AIG1. Several protein-coding genes, including iron-sulfur flavoproteins and heat shock protein 70, were also upregulated in UG10. Overexpression of the EhAIG1 gene (EHI_180390) in nonvirulent UG10 trophozoites resulted in augmented virulence in vitro and in vivo. Cocultivation of HM-1:IMSS with E. coli O55 bacteria cells reduced virulence in vitro, and the EhAIG1 gene expression was downregulated. In contrast, virulence was increased in the monoxenic strain UG10, and the EhAIG1 gene expression was upregulated. Therefore, the EhAIG1 gene (EHI_180390) represents a novel virulence determinant in E. histolytica. Full article
Show Figures

Figure 1

19 pages, 7116 KiB  
Article
Characteristic and Mechanistic Investigation of Stress-Assisted Microbiologically Influenced Corrosion of X80 Steel in Near-Neutral Solutions
by Huihua Guo, Rui Zhong, Bo Liu, Jike Yang, Zhiyong Liu, Cuiwei Du and Xiaogang Li
Materials 2023, 16(1), 390; https://doi.org/10.3390/ma16010390 - 31 Dec 2022
Cited by 7 | Viewed by 2103
Abstract
The behavior and mechanisms of the stress-assisted microbiologically influenced corrosion (MIC) of X80 pipeline steel induced by sulfate-reducing bacteria (SRB) were investigated using focused ion beam-scanning electron microscopy (FIB). Electrochemical results show that SRB and stress have a synergistic effect on the corrosion [...] Read more.
The behavior and mechanisms of the stress-assisted microbiologically influenced corrosion (MIC) of X80 pipeline steel induced by sulfate-reducing bacteria (SRB) were investigated using focused ion beam-scanning electron microscopy (FIB). Electrochemical results show that SRB and stress have a synergistic effect on the corrosion of X80 steel. SRB accelerated the transformation of Fe3O4 into iron-sulfur compounds and may have caused the film breakage of X80 steel products. The obtained FIB results provide direct evidence that SRB promotes the corrosion of X80 steel. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

14 pages, 4478 KiB  
Article
Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source
by Que Nguyen Ho, Giridhar Babu Anam, Jaein Kim, Somin Park, Tae-U Lee, Jae-Young Jeon, Yun-Young Choi, Young-Ho Ahn and Byung Joon Lee
Sustainability 2023, 15(1), 311; https://doi.org/10.3390/su15010311 - 25 Dec 2022
Cited by 10 | Viewed by 5863
Abstract
Wastewater sludge is used as an alternative fuel due to its high organic content and calorific value. However, influent characteristics and operational practices of wastewater treatment plants (WWTPs) can increase the sulfur content of sludge, devaluing it as a fuel. Thus, we investigated [...] Read more.
Wastewater sludge is used as an alternative fuel due to its high organic content and calorific value. However, influent characteristics and operational practices of wastewater treatment plants (WWTPs) can increase the sulfur content of sludge, devaluing it as a fuel. Thus, we investigated the biochemical mechanisms that elevate the sulfur content of sludge in a full-scale industrial WWTP receiving wastewater of the textile dyeing industry and a domestic WWTP by monitoring the sulfate, sulfur, and iron contents and the biochemical transformation of sulfate to sulfur in the wastewater and sludge treatment streams. A batch sulfate reduction rate test and microbial 16S rRNA and dsrB gene sequencing analyses were applied to assess the potential and activity of sulfate-reducing bacteria and their effect on sulfur deposition. This study indicated that the primary clarifier and anaerobic digester prominently reduced sulfate concentration through biochemical sulfate reduction and iron–sulfur complexation under anaerobic conditions, from 1247 mg/L in the influent to 6.2~59.8 mg/L in the industrial WWTP and from 46.7 mg/L to 0~0.8 mg/L in the domestic WWTPs. The anaerobic sludge, adapted in the high sulfate concentration of the industrial WWTP, exhibited a two times higher specific sulfate reduction rate (0.13 mg SO42−/gVSS/h) and sulfur content (3.14% DS) than the domestic WWTP sludge. Gene sequencing analysis of the population structure of common microbes and sulfate-reducing bacteria indicated the diversity of microorganisms involved in biochemical sulfate reduction in the sulfur cycle, supporting the data revealed by chemical analysis and batch tests. Full article
(This article belongs to the Special Issue Biosolids and Sludge of Sustainability)
Show Figures

Graphical abstract

15 pages, 2616 KiB  
Article
Arsenic Mobilization and Transformation by Ammonium-Generating Bacteria Isolated from High Arsenic Groundwater in Hetao Plain, China
by Zhou Jiang, Xin Shen, Bo Shi, Mengjie Cui, Yanhong Wang and Ping Li
Int. J. Environ. Res. Public Health 2022, 19(15), 9606; https://doi.org/10.3390/ijerph19159606 - 4 Aug 2022
Cited by 13 | Viewed by 2449
Abstract
Arsenic (As) mobilization in groundwater involves biogeochemical cycles of carbon, iron, and sulfur. However, few studies have focused on the role of nitrogen-metabolizing bacteria in As mobilization, as well as in the transformation between inorganic and organic As in groundwater. In this study, [...] Read more.
Arsenic (As) mobilization in groundwater involves biogeochemical cycles of carbon, iron, and sulfur. However, few studies have focused on the role of nitrogen-metabolizing bacteria in As mobilization, as well as in the transformation between inorganic and organic As in groundwater. In this study, the nitrogen and As metabolisms of Citrobacter sp. G-C1 and Paraclostridium sp. G-11, isolated from high As groundwater in Hetao Plain, China, were characterized by culture experiments and genome sequencing. The results showed Citrobacter sp. G-C1 was a dissimilatory nitrate-reducing bacterium. The dissimilatory nitrate reduction to ammonia (DNRA) and As-detoxifying pathways identified in the genome enabled Citrobacter sp. G-C1 to simultaneously reduce As(V) during DNRA. Paraclostridium sp. G-11 was a nitrogen-fixing bacterium and its nitrogen-fixing activity was constrained by As. Nitrogen fixation and the As-detoxifying pathways identified in its genome conferred the capability of As(V) reduction during nitrogen fixation. Under anaerobic conditions, Citrobacter sp. G-C1 was able to demethylate organic As and Paraclostridium sp. G-11 performed As(III) methylation with the arsM gene. Collectively, these results not only evidenced that ammonium-generating bacteria with the ars operon were able to transform As(V) to more mobile As(III) during nitrogen-metabolizing processes, but also involved the transformation between inorganic and organic As in groundwater. Full article
(This article belongs to the Special Issue Environmental Microbiology and Water Pollution Applications)
Show Figures

Figure 1

17 pages, 4120 KiB  
Article
Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone
by Shuai Lu, Yimeng Yang, Hanling Yin, Xiaosi Su, Kaining Yu and Chao Sun
Water 2022, 14(10), 1548; https://doi.org/10.3390/w14101548 - 12 May 2022
Cited by 16 | Viewed by 3178
Abstract
Arsenic (As) contamination of groundwater is a global public health problem. Microorganisms have a great effect on the migration and transformation of arsenic. Studying the effect of microbial community structure and function on arsenic release in the groundwater environment of the riverbank filtration [...] Read more.
Arsenic (As) contamination of groundwater is a global public health problem. Microorganisms have a great effect on the migration and transformation of arsenic. Studying the effect of microbial community structure and function on arsenic release in the groundwater environment of the riverbank filtration zone has important theoretical and practical significance. In this paper, in-situ monitoring technology and molecular biology technology were used to study the microbial community in the process of river water infiltration in the Shenyang Huangjia water source, China. The results showed that the structure, diversity and abundance of the microbial community in groundwater were closely related to the arsenic content. Proteobacteria was the dominant phylum in groundwater of the study area, and Acinetobacter, Pseudomonas, Sulfuritalea, Sphingomonas and Hydrogenophaga etc. were the main dominant bacterial genera. In addition to reducing and oxidizing arsenic, these functional microorganisms also actively participated in the biogeochemical cycle of elements such as iron, manganese, nitrogen and sulfur. There was a significant correlation between dominant bacteria and environmental factors. Fe/Mn had a significant positive correlation with As, which brought potential danger to the water supply in high iron and manganese areas. Full article
(This article belongs to the Special Issue River Ecological Restoration and Groundwater Artificial Recharge II)
Show Figures

Figure 1

16 pages, 38123 KiB  
Article
Structural Insights into a Fusion Protein between a Glutaredoxin-like and a Ferredoxin-Disulfide Reductase Domain from an Extremophile Bacterium
by Flavien Zannini, Sandrine Mathiot, Jérémy Couturier, Claude Didierjean and Nicolas Rouhier
Inorganics 2022, 10(2), 24; https://doi.org/10.3390/inorganics10020024 - 17 Feb 2022
Viewed by 3113
Abstract
In eukaryotic photosynthetic organisms, ferredoxin–thioredoxin reductases (FTRs) are key proteins reducing several types of chloroplastic thioredoxins (TRXs) in light conditions. The electron cascade necessary to reduce oxidized TRXs involves a pair of catalytic cysteines and a [4Fe–4S] cluster present at the level of [...] Read more.
In eukaryotic photosynthetic organisms, ferredoxin–thioredoxin reductases (FTRs) are key proteins reducing several types of chloroplastic thioredoxins (TRXs) in light conditions. The electron cascade necessary to reduce oxidized TRXs involves a pair of catalytic cysteines and a [4Fe–4S] cluster present at the level of the FTR catalytic subunit, the iron–sulfur cluster receiving electrons from ferredoxins. Genomic analyses revealed the existence of FTR orthologs in non-photosynthetic organisms, including bacteria and archaea, referred to as ferredoxin-disulfide reductase (FDR) as they reduce various types of redoxins. In this study, we describe the tridimensional structure of a natural hybrid protein formed by an N-terminal glutaredoxin-like domain fused to a FDR domain present in the marine bacterium Desulfotalea psychrophila Lsv54. This structure provides information on how and why the absence of the variable subunit present in FTR heterodimer which normally protects the Fe–S cluster is dispensable in FDR proteins. In addition, modelling of a tripartite complex based on the existing structure of a rubredoxin (RBX)–FDR fusion present in anaerobic methanogen archaea allows recapitulating the electron flow involving these RBX, FDR and GRX protein domains. Full article
(This article belongs to the Special Issue Assembly and Reactivity of Iron–Sulfur Clusters)
Show Figures

Figure 1

16 pages, 3380 KiB  
Article
The Potential Role of S-and Fe-Cycling Bacteria on the Formation of Fe-Bearing Mineral (Pyrite and Vivianite) in Alluvial Sediments from the Upper Chicamocha River Basin, Colombia
by Claudia Patricia Quevedo, Juan Jiménez-Millán, Gabriel Ricardo Cifuentes, Antonio Gálvez, José Castellanos-Rozo and Rosario Jiménez-Espinosa
Minerals 2021, 11(10), 1148; https://doi.org/10.3390/min11101148 - 18 Oct 2021
Cited by 3 | Viewed by 3105
Abstract
S- and Fe-cycling bacteria can decisively affect the crystallization of Fe-bearing minerals in sediments from fluvial environments. We have studied the relationships between the Fe-bearing mineral assemblage and the bacterial community composition in the sediments rich in organic matter from the upper Chicamocha [...] Read more.
S- and Fe-cycling bacteria can decisively affect the crystallization of Fe-bearing minerals in sediments from fluvial environments. We have studied the relationships between the Fe-bearing mineral assemblage and the bacterial community composition in the sediments rich in organic matter from the upper Chicamocha river basin (Colombia). Rapid flowing sections of the river contain sediments that have a high redox potential, are poor in organic matter and are enriched in kaolinite and quartz. On the other hand, the mineral assemblage of the sediments deposited in the La Playa dam with a high content in organic matter is enriched in Fe-bearing minerals: (a) vivianite and pyrite in the permanently flooded sediments of the dam and (b) pyrite and goethite in the periodically emerged sediments. The bacterial community composition of these sediments reveals anthropic organic matter pollution processes and biodegradation associated with eutrophication. Moreover, periodically emerged sediments in the La Playa dam contain bacterial groups adapted to the alternation of dry and wet periods under oxic or anoxic conditions. Cell-shaped aggregates with a pyritic composition suggest that sulfate-reducing bacteria (SRB) communities were involved in the precipitation of Fe-sulfides. The precipitation of vivianite in the flooded sediments was favored by a greater availability of Fe(II), which promoted the iron-reducing bacteria (IRB) enrichment of the sediments. The presence of sulfur-oxidizing bacteria (SOB) in the flooded sediments and the activity of iron-oxidizing bacteria (IOB) in the periodically emerged sediments favored both pyrite crystallization under a high sulfide availability and the oxidation of microbially precipitated monosulfides. Moreover, IOB enhanced goethite formation in the periodically emerged sediments. Full article
(This article belongs to the Special Issue Microorganisms and Minerals in Natural and Engineered Environments)
Show Figures

Figure 1

19 pages, 20974 KiB  
Article
The Impact of Ecological Restoration on Biogeochemical Cycling and Mercury Mobilization in Anoxic Conditions on Former Mining Sites in French Guiana
by Ewan Couic, Alicia Tribondeau, Vanessa Alphonse, Alexandre Livet, Michel Grimaldi and Noureddine Bousserrhine
Microorganisms 2021, 9(8), 1702; https://doi.org/10.3390/microorganisms9081702 - 10 Aug 2021
Cited by 1 | Viewed by 3246
Abstract
Successive years of gold mining in French Guiana has resulted in soil degradation and deforestation leading to the pollution and erosion of mining plots. Due to erosion and topography, gold panning sites are submitted to hydromorphy during rainfall and groundwater increases. This original [...] Read more.
Successive years of gold mining in French Guiana has resulted in soil degradation and deforestation leading to the pollution and erosion of mining plots. Due to erosion and topography, gold panning sites are submitted to hydromorphy during rainfall and groundwater increases. This original study focused on characterizing the impact of hydromorphic anaerobic periods on bio-geochemical cycles. We sampled soil from five rehabilitated sites in French Guiana, including sites with herbaceous vegetation and sites restored with fabaceous plants, Clitoria racemosa (Cli) mon-oculture, Acacia mangium (Aca) monoculture, Clitoria racemosa and Acacia mangium (Mix) bi-culture. We conducted mesocosm experiments where soil samples were incubated in anaerobic conditions for 35 days. To evaluate the effect of anaerobic conditions on biogeochemical cycles, we measured the following parameters related to iron-reducing bacteria and sulfate-reducing bacteria metabolism throughout the experiment: CO2 release, carbon dissolution, sulphide production and sulphate mobilization. We also monitored the solubilization of iron oxyhydroxides, manganese oxides, aluminum oxides and mercury in the culture medium. Iron-reducing bacteria (IRB) and sulfate-reducing bacteria (SRB) are described as the major players in the dynamics of iron, sulfur and metal elements including mercury in tropical environments. The results revealed two trends in these rehabilitated sites. In the Aca and Mix sites, bacterial iron-reducing activity coupled with manganese solubilization was detected with no mercury solubilization. In herbaceous sites, a low anaerobic activity coupled with sulphide production and mercury solubilization were detected. These results are the first that report the presence and activity of iron- and sulfate-reductive communities at rehabilitated mining sites and their interactions with the dynamics of metallic elements and mercury. These results report, however, the positive impact of ecological restoration of mining sites in French Guiana by reducing IRB and SRB activities, the potential mobility of mercury and its risk of transfer and methylation. Full article
Show Figures

Graphical abstract

Back to TopTop