Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = iron oxide and calcium carbonate nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7928 KiB  
Article
Eggshell-Mediated Hematite Nanoparticles: Synthesis and Their Biomedical, Mineralization, and Biodegradation Applications
by Maida Ayub, Mahwish Bashir, Farzana Majid, Rabia Shahid, Babar Shahzad Khan, Adnan Saeed, Mohammed Rafi Shaik, Mufsir Kuniyil, Baji Shaik and Mujeeb Khan
Crystals 2023, 13(12), 1699; https://doi.org/10.3390/cryst13121699 - 18 Dec 2023
Cited by 2 | Viewed by 2392
Abstract
The present study demonstrates the synthesis of phase pure hematite (α-Fe2O3) nanoparticles (NPs) using collagen protein and calcium carbonate extracted from eggshell membranes and eggshells, respectively, as organic additives. To test the influence of organic additives on the quality [...] Read more.
The present study demonstrates the synthesis of phase pure hematite (α-Fe2O3) nanoparticles (NPs) using collagen protein and calcium carbonate extracted from eggshell membranes and eggshells, respectively, as organic additives. To test the influence of organic additives on the quality of the resulting NPs, the amount of eggshell powder was varied between 1 to 5 g in aqueous iron nitrate solution. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and RAMAN analysis confirmed the formation of hematite NPs without any impurities. FTIR spectra revealed the presence of polyphenolic constituents on the surface of the resulting NPs as stabilizers, which may potentially be responsible for the observed antioxidant and antibacterial properties. Furthermore, the stable phase and the presence of low defects divulged the high hardness value (~983 HV) and fracture toughness (8.59 MPa m1/2), which can be exploited for bone implantation. The FE-SEM results demonstrate the formation of spherical particles, which are well-separated NPs. The results of a biodegradation study which was carried out in phosphate-buffered saline (PBS) revealed that the as-prepared NPs retained their hardness even after 72 h of soaking. These prepared NPs showed 95% radical scavenging activity (RSA) and were good carriers against S. aureus bacteria. Moreover, the SEM images of the mineralization of iron oxide NPs confirmed the formation of new bone. After 5 weeks, all pores were filled, and the minerals were deposited on the surfaces of the scaffolds. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

21 pages, 13449 KiB  
Article
pH-Responsible Doxorubicin-Loaded Fe3O4@CaCO3 Nanocomposites for Cancer Treatment
by Victoriya Popova, Yuliya Poletaeva, Alexey Chubarov and Elena Dmitrienko
Pharmaceutics 2023, 15(3), 771; https://doi.org/10.3390/pharmaceutics15030771 - 26 Feb 2023
Cited by 21 | Viewed by 4548
Abstract
A magnetic nanocomposite (MNC) is an integrated nanoplatform that combines a set of functions of two types of materials. A successful combination can give rise to a completely new material with unique physical, chemical, and biological properties. The magnetic core of MNC provides [...] Read more.
A magnetic nanocomposite (MNC) is an integrated nanoplatform that combines a set of functions of two types of materials. A successful combination can give rise to a completely new material with unique physical, chemical, and biological properties. The magnetic core of MNC provides the possibility of magnetic resonance or magnetic particle imaging, magnetic field-influenced targeted delivery, hyperthermia, and other outstanding applications. Recently, MNC gained attention for external magnetic field-guided specific delivery to cancer tissue. Further, drug loading enhancement, construction stability, and biocompatibility improvement may lead to high progress in the area. Herein, the novel method for nanoscale Fe3O4@CaCO3 composites synthesis was proposed. For the procedure, oleic acid-modified Fe3O4 nanoparticles were coated with porous CaCO3 using an ion coprecipitation technique. PEG-2000, Tween 20, and DMEM cell media was successfully used as a stabilization agent and template for Fe3O4@CaCO3 synthesis. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) data were used for the Fe3O4@CaCO3 MNC’s characterization. To improve the nanocomposite properties, the concentration of the magnetic core was varied, yielding optimal size, polydispersity, and aggregation ability. The resulting Fe3O4@CaCO3 had a size of 135 nm with narrow size distributions, which is suitable for biomedical applications. The stability experiment in various pH, cell media, and fetal bovine serum was also evaluated. The material showed low cytotoxicity and high biocompatibility. An excellent anticancer drug doxorubicin (DOX) loading of up to 1900 µg/mg (DOX/MNC) was demonstrated. The Fe3O4@CaCO3/DOX displayed high stability at neutral pH and efficient acid-responsive drug release. The series of DOX-loaded Fe3O4@CaCO3 MNCs indicated effective inhibition of Hela and MCF-7 cell lines, and the IC 50 values were calculated. Moreover, 1.5 μg of the DOX-loaded Fe3O4@CaCO3 nanocomposite is sufficient to inhibit 50% of Hela cells, which shows a high prospect for cancer treatment. The stability experiments for DOX-loaded Fe3O4@CaCO3 in human serum albumin solution indicated the drug release due to the formation of a protein corona. The presented experiment showed the “pitfalls” of DOX-loaded nanocomposites and provided step-by-step guidance on efficient, smart, anticancer nanoconstruction fabrication. Thus, the Fe3O4@CaCO3 nanoplatform exhibits good performance in the cancer treatment area. Full article
(This article belongs to the Special Issue New Properties of Supramolecular Complexes and Drug Nanoparticles)
Show Figures

Graphical abstract

18 pages, 6111 KiB  
Article
Self-Healing Bio-Concrete Using Bacillus subtilis Encapsulated in Iron Oxide Nanoparticles
by Faisal Mahmood, Sardar Kashif Ur Rehman, Mohammed Jameel, Nadia Riaz, Muhammad Faisal Javed, Abdelatif Salmi and Youssef Ahmed Awad
Materials 2022, 15(21), 7731; https://doi.org/10.3390/ma15217731 - 3 Nov 2022
Cited by 22 | Viewed by 7787
Abstract
For the creation of healable cement concrete matrix, microbial self-healing solutions are significantly more creative and potentially successful. The current study investigates whether gram-positive “Bacillus subtilis” (B. subtilis) microorganisms can effectively repair structural and non-structural cracks caused at the [...] Read more.
For the creation of healable cement concrete matrix, microbial self-healing solutions are significantly more creative and potentially successful. The current study investigates whether gram-positive “Bacillus subtilis” (B. subtilis) microorganisms can effectively repair structural and non-structural cracks caused at the nano- and microscale. By creating an effective immobilization strategy in a coherent manner, the primary challenge regarding the viability of such microbes in a concrete mixture atmosphere has been successfully fulfilled. The iron oxide nanoparticles were synthesized. The examined immobilizing medium was the iron oxide nanoparticles, confirmed using different techniques (XRD, SEM, EDX, TGA, and FTIR). By measuring the average compressive strength of the samples (ASTM C109) and evaluating healing, the impact of triggered B. subtilis bacteria immobilized on iron oxide nanoparticles was examined. The compressive strength recovery of cracked samples following a therapeutic interval of 28 days served as a mechanical indicator of the healing process. In order to accurately correlate the recovery performance as a measure of crack healing duration, the pre-cracking load was set at 80% of the ultimate compressive stress, or “f c,” and the period of crack healing was maintained at 28 days. According to the findings, B. subtilis bacteria greatly enhanced the compressive strength and speed up the healing process in cracked cement concrete mixture. The iron oxide nanoparticles were proven to be the best immobilizer for keeping B. subtilis germs alive until the formation of fractures. The bacterial activity-driven calcite deposition in the generated nano-/micro-cracks was supported by micrographic and chemical investigations (XRD, FTIR, SEM, and EDX). Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

11 pages, 3310 KiB  
Article
Magneto-Fluorescent Hybrid Sensor CaCO3-Fe3O4-AgInS2/ZnS for the Detection of Heavy Metal Ions in Aqueous Media
by Danil A. Kurshanov, Pavel D. Khavlyuk, Mihail A. Baranov, Aliaksei Dubavik, Andrei V. Rybin, Anatoly V. Fedorov and Alexander V. Baranov
Materials 2020, 13(19), 4373; https://doi.org/10.3390/ma13194373 - 30 Sep 2020
Cited by 12 | Viewed by 3663
Abstract
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method [...] Read more.
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field. Full article
(This article belongs to the Special Issue Photoactive Materials: Synthesis, Applications and Technology)
Show Figures

Figure 1

17 pages, 765 KiB  
Review
Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer
by Safia Naz, Muhammad Shamoon, Rui Wang, Li Zhang, Juan Zhou and Jinghua Chen
Int. J. Mol. Sci. 2019, 20(4), 965; https://doi.org/10.3390/ijms20040965 - 22 Feb 2019
Cited by 71 | Viewed by 9018
Abstract
Numerous nanoparticles drug delivery systems for therapeutic implications in cancer treatment are in preclinical development as conventional chemotherapy has several drawbacks. A chemotherapeutic approach requires high doses of chemotherapeutic agents with low bioavailability, non-specific targeting, and above all, development of multiple drug resistance. [...] Read more.
Numerous nanoparticles drug delivery systems for therapeutic implications in cancer treatment are in preclinical development as conventional chemotherapy has several drawbacks. A chemotherapeutic approach requires high doses of chemotherapeutic agents with low bioavailability, non-specific targeting, and above all, development of multiple drug resistance. In recent years, inorganic nano-drug delivery platforms (NDDPs; with a metal core) have emerged as potential chemotherapeutic systems in oncology. One of the major goals of developing inorganic NDDPs is to effectively address the targeted anti-cancer drug(s) delivery related problems by carrying the therapeutic agents to desired tumors sites. In this current review, we delve into summarizing the recent developments in targeted release of anti-cancer drugs loaded in inorganic NDDPs such as mesoporous silica nanoparticles, carbon nanotubes, layered double hydroxides, superparamagnetic iron oxide nanoparticles and calcium phosphate nanoparticles together with highlighting their therapeutic performance at tumor sites. Full article
(This article belongs to the Special Issue Surface-Functionalized Nanoparticles as Drug Carriers)
Show Figures

Figure 1

Back to TopTop