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Abstract: The present study demonstrates the synthesis of phase pure hematite (α-Fe2O3) nanoparti-
cles (NPs) using collagen protein and calcium carbonate extracted from eggshell membranes and
eggshells, respectively, as organic additives. To test the influence of organic additives on the quality of
the resulting NPs, the amount of eggshell powder was varied between 1 to 5 g in aqueous iron nitrate
solution. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and RAMAN
analysis confirmed the formation of hematite NPs without any impurities. FTIR spectra revealed the
presence of polyphenolic constituents on the surface of the resulting NPs as stabilizers, which may
potentially be responsible for the observed antioxidant and antibacterial properties. Furthermore,
the stable phase and the presence of low defects divulged the high hardness value (~983 HV) and
fracture toughness (8.59 MPa m1/2), which can be exploited for bone implantation. The FE-SEM
results demonstrate the formation of spherical particles, which are well-separated NPs. The results of
a biodegradation study which was carried out in phosphate-buffered saline (PBS) revealed that the
as-prepared NPs retained their hardness even after 72 h of soaking. These prepared NPs showed
95% radical scavenging activity (RSA) and were good carriers against S. aureus bacteria. Moreover,
the SEM images of the mineralization of iron oxide NPs confirmed the formation of new bone. After
5 weeks, all pores were filled, and the minerals were deposited on the surfaces of the scaffolds.

Keywords: hematite; eggshell; antibacterial; mineralization; antioxidant

1. Introduction

Nanotechnology has emerged as a revolutionary field of science, with vast applications
ranging from electronics and energy to medicine and environmental protection. The unique
properties exhibited by nanomaterials have garnered tremendous attention, making them
the focus of extensive research [1]. Among the diverse array of nanomaterials, metal oxide
nanoparticles (NPs) have emerged as a promising candidate for potential applications in
various fields owing to their distinctive physicochemical properties at the nanoscale, which
often differ significantly from their bulk counterparts [2]. These properties are mainly
attributed to the high surface-to-volume ratio, leading to enhanced surface reactivity,
and quantum confinement effects resulting from the confinement of electrons within the
nanoparticle’s structure. As a consequence, metal oxide NPs exhibit unique electrical,
optical, magnetic, and catalytic properties. Some of the most extensively studied metal
oxide NPs include, but are not limited to, zinc oxide (ZnO), titanium dioxide (TiO2), iron
oxide (Fe2O3), copper oxide (CuO), cerium oxide (CeO2), etc. [3].
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Among various metal oxide NPs, Fe2O3 is very fascinating and holds immense promise
as a multifunctional nanomaterial. The significance of Fe2O3 NPs stems from their excep-
tional attributes, such as high surface area, excellent stability, and catalytic activity, making
them ideal for a wide range of applications. Fe2O3 exists in different phases, such as
α-Fe2O3 (hematite), γ-Fe2O3 (maghemite), β-Fe2O3, and ε-Fe2O3 [4]. α-Fe2O3 (hematite) is
extremely stable, abundant, inexpensive, environmentally sustainable, less toxic, biodegrad-
able, and biocompatible. It has a narrow band gap and exhibits strong absorption in the
visible and near-infrared regions. This particular phase demonstrates enhanced perfor-
mance in biological, environmental, and various technological applications [5].

The properties, and, hence, the applications, of synthesized nanoparticles could be
strongly controlled by a particular synthesis process. α-Fe2O3 NPs have been synthesized
using various routes, such as hydrothermal, solvothermal, and co-precipitation methods;
vapor–solid growth techniques; the sol–gel method; laser ablation; the template-assisted
method, etc. [6–9]. The sol–gel synthesis method has several advantages, such as excellent
control over microstructures, nanoparticle sizes, shapes, variation in material properties by
the composition of the precursor, and low processing temperature [10]. However, even the
sol–gel synthesis method, like most of the other methods mentioned above, often involves
the utilization of toxic and expensive chemical reducing and stabilizing agents for the
synthesis of α-Fe2O3 NPs with controlled sizes and stability [11].

In recent years, the importance of green synthesis techniques has become increasingly
evident due to their eco-friendly nature and minimal adverse impact on the environment.
Green synthesis techniques utilize naturally occurring reducing and stabilizing agents such
as plant extracts, microorganisms, etc.

In this context, eggshell-based green synthesis of NPs has gained attention for its
sustainable approach and cost-effectiveness. Similar to other natural materials, eggshells
contain natural antioxidants, such as flavonoids and phenolic compounds, which can poten-
tially act as reducing agents during the green synthesis of NPs [12]. Moreover, the presence
of calcium carbonate, proteins, and polysaccharides in eggshells may also contribute to the
stabilization and control of NP growth. Hence, eggshells offer an abundant, biocompatible,
and biodegradable precursor for the synthesis of NPs [13]. Bone regeneration is typically
used when a bone needs to heal. Until now, a wide variety of scaffolds have been used,
e.g., collagen, but they cause rapid absorption and have low hardness, in addition to the
costs. Thus, here, naturally available eggshells and membranes are used for enhancing the
physical properties and bioactivity of iron oxide. The scaffold exhibited adequate flexibility
and mechanical strength as a biomedical platform for bone regeneration. The dispersed
NPs were found to regulate and enhance cell morphology, mineralization, and adhesion
and to decrease degradation in vitro. The presence of eggshells and membrane-added NPs
have gained potential interest in scaffold and tissue engineering. The presence of eggshells
and membranes especially increased the interaction between the cells and the scaffolds.
The eggshells and membranes also provided constituent elements, which are necessary for
bone regeneration [14].

Several reports could be found on the green-synthesized α-Fe2O3 NPs using naturally
occurring resources. These nanoparticles hold immense importance in various applications,
as their eco-friendly production method ensures minimal environmental impact while
retaining their exceptional properties, making them ideal candidates for sustainable and
biocompatible solutions in medicine, environmental remediation, and energy storage.
Considering the broad range of potential applications of α-Fe2O3 NPs, researchers are
continuously exploring their multifunctional properties.

For instance, the antibacterial activity of α-Fe2O3 NPs, which were prepared using the
green synthesis method, was tested against E. Coli and Bacillus subtilis bacteria. The synthe-
sized NPs were found to be more efficient against Bacillus subtilis as compared to E. Coli,
with observed zone of inhibition (ZOI) values of 16.00 and 11.33 mm, respectively [15].
Another report was found on the antibacterial activity of iron oxide nanoparticles prepared
via the microwave method using hibiscus flower extract as a reducing and stabilizing
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agent. The reported ZOI value was 5 mm [16]. Mesoporous α-Fe2O3 NPs using green tea
extract showed photocatalytic activity two times higher than that of commercial ones [7].
Rhus punjabensis extract was used as both reducing and capping agent for the phytomedi-
ated synthesis of hematite NPs from a ferric chloride precursor. NPs exhibited cytotoxic
effects against HL-60 leukemic and DU-145 prostate cancer cell lines, with ED50 values
of 11.9 and 12.79 µg/mL, respectively [5]. Piper betel leaf extract was used to synthe-
size α-Fe2O3 NPs from anhydrous ferric chloride. The nanoparticles showed enhanced
antibacterial activity against Pseudomonas aeruginosa and Streptococcus mutans, and also
showed anticancer potential against A549 (lung cancer) cells [17]. α-Fe2O3 NPs synthesized
using Vernonia amygdalina (V. amygdalina) leaf extract and Fe(NO3)3.9H2O precursor were
reported to effectively degrade methylene blue and methylene orange dyes [18]. Various
extracts have been used to synthesize α-Fe2O3 NPs using the green synthesis approach;
however, to the best of our knowledge, no report has been made on the eggshell-based
green synthesis of α-Fe2O3 nanoparticles for a simultaneous antibacterial, antioxidant, and
mineralization study.

The current study aims to explore the fascinating applications of α-Fe2O3 NPs. Mor-
phological, structural, compositional, and mechanical analyses were performed using SEM,
XRD, FTIR, RAMAN, and a hardness Vickers indenter, respectively. Our research encom-
passes an in-depth investigation of the antibacterial potential, antioxidant efficacy, and
mineralization capabilities of these NPs. The findings of this study show the novel syn-
thesis of hematite, and eggshells play an important role in the generation of well-defined,
non-agglomerated, spherical NPs with enhanced antioxidant properties as compared to
the previous literature [19]. Eggshell-mediated hematite NPs demonstrate the formation of
hydroxyapatite. Very few reports are available on the use of hematite as a scaffold with
reasonable hardness [20].

2. Materials and Methods
2.1. Materials

Iron nitrate nonahydrate, Fe(NO3)3, 9H2O (Sigma Aldrich, St. Louis, MO 63118, USA),
and de-ionized (DI) water were used as the starting materials. Eggshells were used as an
organic additive.

2.2. Preparation of Eggshell Powder

Hen eggshells with the membrane were separated from the egg white and yolk.
Eggshells were washed with DI water thoroughly and dried in an oven at 50 ◦C. Dried
eggshells were ground to form a fine powder [21].

2.3. Preparation of Eggshell Additive Iron Oxide

A sample of 4.04 g of iron nitrate was dissolved in 500 mL DI water to form a stock
solution with a molarity of 0.1 M. This stock solution was stirred at room temperature. pH
was measured as neutral. Iron nitrate reacted with DI water and formed iron hydroxide as
shown in Equation (1):

Fe3+(aq) + 3H2O→ Fe(OH)3 + 3H+(aq) (1)

Next, 1, 2, 3, 4, and 5 g of eggshell powder were added per 100 mL mixture of iron
nitrate. During the synthesis, eggshells were attached to iron. The above mixture was
stirred at room temperature until its color changed from yellow to rust orange. The pH
was measured as neutral. Then, the mixture was dried at 60 ◦C, washed with DI water,
and centrifuged three times to remove by-products [22]. Figure 1 shows a schematic
representation of iron oxide NPs.
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Figure 1. Schematic representation of eggshell-mediated iron oxide NPs.

2.4. Characterizations

Iron oxide NPs were examined using an X-ray diffractometer (Rigaku, Japan) at
various eggshell amounts. The scanning range was 20 to 70◦, with 0.05◦ intervals. Using a
confocal Raman spectrometer (Renishaw inVia, UK, Argon laser wavelength = 514 nm),
a further phase confirmation was carried out. FE-SEM (Nova Nano SEM 450, USA) was
used to evaluate the morphology at various magnifications. The Vickers nano-indenter
was first to be used to examine the models’ toughness in order to conduct an analysis. The
functional groups were investigated using the FTIR Bruker Tensor II (Bruker, Germany).
Additionally, a spectrum with a resolution of 4 cm−1 was acquired in the 600–2000 cm−1

region using a Rock Solid Interferometer.

2.4.1. Biodegradation Study

Iron oxide, with eggshells, was subjected to a degradation study in phosphate-buffered
saline (PBS), with lysozyme as the primary component. The primary enzyme responsible
for scaffold degradation in vivo is lysozyme [23,24]. Eggshell-mediated iron oxide NPs
were immersed in 10 mg/L of PBS for different durations: 1, 2, 3, 4, 5, 6, and 7 days. Iron
oxide NPs with eggshells were inspected for degradation before and after soaking in PBS. DI
water was used to clean the iron oxide NPs, and after soaking, they were separated. Samples
were dried for 48 h after separation to remove any remaining water. The formula found in
Equation (6) [25] was used to calculate the weight loss of the thoroughly cleaned NPs:

Weight loss(%) =
W1−W2

W1
× 100 (2)

where

W1 = weight before soaking;
W2 = weight after soaking.

2.4.2. Antimicrobial Activity Evaluation

To evaluate the antibacterial efficacy of the extracted materials, two strains were used.
On Lauria Bertani medium (LB), S. aureus (ATCC23235) and E. Coli (ATCC25922) were
sub-cultured and incubated for 24 h at 37 degrees Celsius. The antibacterial activity was
evaluated using the disc diffusion method. Using a sterile swab and a saline suspension
(NaCl, 0.9 percent), which had previously been calibrated using the 0.5 Mc Farland standard,
the investigated strains were uniformly injected into the LB medium. Whattman paper discs
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measuring 6 mm in diameter were placed over the culture substrate and then submerged
in the tested extract [26]. After incubating the inhibitory halos for 24 h at 37 ◦C, their
diameter was measured. Three different doses of 10 mg/mL, 20 mg/mL, and 30 mg/mL
were prepared, and the extract was diluted in DMSO.

2.4.3. Antioxidant Study

The study of antioxidants is crucial for biomaterials and implants. The radical scav-
enging capacity of iron oxide NPs produced with 5 g of eggshell material was examined.
Utilizing the DPPH (1, 1, diphenyl-2-picryl hydrazyl) test, the antioxidant capacities of the
produced samples were investigated. De-colorization (purple to light yellow) brought on
by the neutralization process was the primary mechanism underlying the antioxidant effect.
The DPPH and methanol solution received the optimum NP addition. The entire mixture
was kept in a dimly lit chamber at 37 ◦C for 30 min. The data of the absorbance peak
at 517 nm and decolorization were used to confirm the measurements. Using Equation
(3) [27], the percentage of scavenging activity was calculated:

Free radical scavenging activity(%) =
AControl − ASample

AControl
× 100 (3)

where ascorbic acid was used as the control.

2.4.4. In Vitro Bio-Mineralization Study

Eggshell-mediated iron oxide scaffolds were soaked in stimulated body fluid (SBF) [28]
for 1, 2, 3, 4, and 5 weeks, and then washed with DI water. SEM was used to view the
formation of new bone.

3. Results and Discussion
3.1. Structural Analysis

The main purpose of this study is to study the effect of eggshell powder on the
structural and mechanical properties of hematite NPs. Mechanical properties are strongly
enhanced by the stable phase and high crystallinity of the resulting NPs. Figure 2 depicts
the XRD patterns of eggshell-mediated iron oxide aided by the sol–gel method. The peaks
correspond (012), (104), (110), (024), (116), and (214) planes of the rhombohedral structure of
α-Fe2O3 (JCPDS card no. 33-664) [29]. Samples synthesized with a relatively low eggshell
content (1 g) exhibited low crystallinity, as shown in Figure 2a. The intensity of the peaks
began to increase at 2 g of eggshell content (Figure 2b) and the phase was strengthened
by up to 5 g (Figure 2e). As the eggshell content increased up to 2 g, another plane (116)
appeared. Notably, with increasing eggshell content, the phase of iron oxide NPs also
strengthened, which was clearly visible with the appearance of the reflection due to the
(214) planes, for instance. The main reason for the higher content of organic additives is
that it causes rapid heating in sol and results in increased crystallinity.
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(e) 5 g.

Gaussian fitting was applied for further analysis from XRD data. Numerous parame-
ters, e.g., full width and half maximum (FWHM), exact peak center value, and area IntgP
were investigated. For 1 g of eggshell content (Figure 3a), a relatively higher FWHM was
observed, and the characteristic peak 2θ = 33.7◦ was 1.44. A slight shift in characteristic
peak 2θ = 33.6◦ was observed with the eggshell content (2 g) due to stresses generated by
the addition of organic content [30], with a FWHM of 0.96. The intensity of the characteristic
peak increased along 2θ = 33.70◦, with slight increase in FWHM 1.04. In comparison with
2 g of eggshell content, FWHM increased, while compared to 1 g, FWHM decreased. With
a further increase in eggshell content up to 5 g, FWHM decreased which confirms the
crystallinity of α-Fe2O3. The fitting of XRD data also provided the area IntgP. The areas of
characteristic peak for 1, 2, 3, 4, and 5 g of eggshell content were 30.93%, 32.75%, 40.03%,
49.56%, and 58.62%, indicating the strengthening of the hematite phase.

The crystallite size was determined using Scherrer’s formula, given in Equation (4) [31]:

Dhkl =
0.9λ

(FWHM)Cosθ
(4)

δ =
1

D2 (5)

where, Dhkl = crystallite size, λ = 1.5406 Å, and δ = dislocation density.
The crystallite size of eggshell-mediated iron oxide is shown in Figure 4. The crystallite

size increased up to 2 g of eggshells, while a slight decrease in crystallite size was observed
at 3 g. Further increases in eggshell content led to larger crystallite sizes. As observed in
Figure 2, a higher shell content led to phase strengthening and stabilization. After reaching
phase stability, the emergence of nuclei occurred, resulting in larger crystallites. From
the crystallite size, the dislocation density (lines/m2) was also calculated by Equation (5).
Almost-decreasing behavior was observed for dislocation density, which is a prerequisite
for bone applications. Notably, electrostatic attraction to charged groups, substitution of
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metal ion ligands by appropriate nucleophilic groups of the protein, or a hydrophobic kind
of contact are all possible ways for Fe3+ to bind to the protein [32]. This binding leads to an
increase in crystallinity and phase strengthening.
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For bone implantation, the unit cell volume and density play important roles. A slight
shrinkage in volume was observed with the eggshell content. The unit cell volume of
hematite NPs was determined by Equation (6), [31] and is graphically presented in Figure 5.
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In Figure 5, X-ray density is also present. A relatively higher X-ray density (~5.41 g/cm3)
was determined in organic additive iron oxide. This calculated X-ray density has also been
used for porosity calculations. Equations (7) and (8) are used for density and porosity
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calculations, respectively [31]. Figure 6 represents the very low porosity with a higher
eggshell content.

X− ray density = ρ =
1.66042ΣA

V
(7)

Porosity(%) = 1− ρobserved
ρTheoretical

× 100 (8)
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3.2. Raman Analysis

A Raman analysis of eggshell-mediated hematite NPs is shown in Figure 7. Usually,
seven phonon peaks are present in the Raman spectrum of hematite. In the literature,
hematite peaks are found at 225 cm−1 (A1g), 249 cm−1 (Eg), 293 cm−1 (Eg), 297cm−1 (Eg),
410 cm−1 (Eg), 496 cm−1 (Eg), and 608 cm−1 (A1g) [33]. An almost identical spectrum has
been observed (Figure 7), as described in the literature. Figure 7 contains six main peaks,
and the intensity of the peaks is shown to increase along with the eggshell content, which is
in good agreement with XRD results. Hematite NPs usually contains broad peaks in Raman
analysis as compared to its other phases [34]. On the other hand, the broadness of the
peaks gives an indication of small NPs. Here, we used organic additives, which changed
the local environment of the particles, leading to a strong electron–phonon interaction and
the enlargement of bandwidths.
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3.3. FTIR analysis

FTIR spectra of iron oxide are presented in Figure 8 for various eggshell contents.
Figure 8 reveals that the samples mostly contained carboxyl, phenolic, and hydroxyl groups.
The peak at 720 cm−1 belongs to Fe-O stretching. A broad band at 868 cm−1 confirms the
presence of phenol groups, and the appearance of a new peak at 840 cm−1 demonstrates
that Fe cations interact with C-O [35]. As the eggshell content increased, the phenol group
width of this band increased, and sharpness of the band was observed. Eggshells were
added aiming for applications in bone implantation. The formation of metal carboxylate
due to the presence of minerals on the surface of iron oxide facilitates the formation of
new bone. This type of investigation was is also reported by Yang et al. [36]. The strongest
one was observed at ~1400 cm−1. Based on the literature [37,38], the band observed at
~1400 cm−1 was assigned to calcium carbonate coming from the eggshells. The intensities
of the FT-IR peaks in the region of 1350 cm−1–1650 cm−1 decreased, which may possibly
point towards alterations in the calcium carbonate contents. From these results, we can
conclude that the eggshells were bound to the surface of the hematite. This reaction may
occur during drying to form phenol groups and surface hydroxyl groups. The drying
process may promote localized heating production due to the presence of organic additives.
A comparison between Figure 8a and 8e indicates that peaks for phenol groups and calcium
carbonate were present in all spectra. Therefore, it was concluded that hematite NPs are
also modified by eggshells [36,39].
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3.4. Hardness and Fracture Toughness

The main aim of synthesizing eggshell iron oxide for bone applications means that
strength and toughness are very important. A Vickers nano-indenter was utilized to
measure the hardness and the fracture toughness of the samples. Hardness was mainly
influenced by the density and porosity of the samples. Figure 5 represents that the density
of the samples increased with phase strengthening and eggshell content. The same trend
was observed when measuring the hardnesses of the samples. The hardness of the samples
increased, and a maximum of 983 HV was observed with 5 g of eggshell content. Table 1
represents the mechanical values. Fracture toughness was also calculated using the crack
length produced with indentation. Ten measurements were taken to verify the standard
JIS R 1607 [40]. Normally, three models are working: (1) Palmqvist cracks, (2) half-penny
crack, and (3) curve-fitting. The model selection was based on the c/a ratio, as reported
earlier [41]. If c/a < 2, then normally, the Palmqvist model is used [42,43].

Table 1. Hardness and fracture toughness of eggshell-mediated hematite NPs.

Egg Shell Content (g)
Hardness Vickers

(HV) at Constant Load (5N) and
Time (10S)

Fracture Toughness (MPa
m1/2)

1 680 ± 5 5.89 ± 2

2 755 ± 5 6.23 ± 2

3 789 ± 5 7.01 ± 2

4 863 ± 5 7.85 ± 2

5 983 ± 5 8.59 ± 2
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The fracture toughness, KIc (MPa m1/2), was determined using Equation (9) [44]:

KIc = 9.052× 10−3 H3/5 E3/5 d. c−1/2 (9)

where H = hardness (MPa), E = Young’s modulus (210,000 MPa), d = average diagonal line
length of the indentation, and c = average length of the Palmqvist cracks.

Table 1 and Figure 9 show the variation in fracture toughness with the eggshell content.
The main parameters affecting the values of hardness and fracture toughness were phase
purity, grain size, porosity, density, crack-free structures, and agglomeration. Following
Equation (10) further confirms the relation between porosity and hardness.

Hv = Hoe−bP (10)

where Ho = hardness of the material, b = constant, and P = porosity.
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Low porosity and a non-agglomerated structure results in a high hardness value.
The formation of a non-agglomerated structure was observed by field emission scanning
electron microscopy (FE-SEM).

3.5. Morphological Study

Images from the FE-SEM for 5 g of eggshell content are shown in Figure 10a,b. The
images show some porosity and particle agglomeration content. It can be seen that the
particle contribution basically remained constant as the eggshell content increased, and the
dispersion was good. The synthesis method determined the size of the nanostructures and
the phase fraction. With size ranges of 40 to 50 nm, almost spherical NPs were produced.
According to XRD calculations (Figure 6), the samples’ porosity declined and reached
a minimum value at 5 g of eggshell content. There was still some porosity accessible,
which was necessary for the scaffold to create a link with biological tissues. The structural
similarity of nucleation sites is a misleading feature regulating the phase composition; there
is no conclusive theory that predicts the quantitative crystal structure. Iron nitrate was
utilized as a precursor during the synthesis of iron oxide, resulting in a hydro complex
whose structure was extremely close to that of hematite [45].
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3.6. In Vitro Biodegradation Study

These phase-pure, dense, and hard hematite NPs were utilized for a biodegradation
study in terms of loss in weight and hardness. NPs containing 5 g of eggshell iron oxide
were placed in phosphate-buffered saline (PBS) for 1, 2, 3, 4, 5, 6, and 7 days. Variations in
hardness and weight were measured after fixed intervals. It is worth mentioning here that
synthesized NPs showed slight variation even after 7 days. Although the hardness of the
sample decreased gradually, it still had a suitable hardness for bone implantations. The
variation in value was calculated by Equation (2) and is summarized in Table 2.

Table 2. Biodegradation study of egg shell added hematite.

Time Intervals (Days) Weight Loss (%) Hardness (HV)

1 0.84 ± 0.1 965 ± 5

2 1.03 ± 0.1 935 ± 5

3 1.43 ± 0.1 9055 ± 5

4 2.56 ± 0.2 883 ± 5

5 5.74 ± 0.1 850 ± 5

6 6.48 ± 0.1 803 ± 5

7 7.86 ± 0.1 765 ± 5

The result demonstrates the steep decrease in weight and hardness with the increase in
time immersed in PBS. However, the biocompatibility of eggshell-mediated hematite NPs
hindered regular cell functions. In order to maintain bone function, good biocompatibility
and a moderate degradation rate are required. In fact, at a moderate degradation rate,
bone can retain its properties, while a very slow degradation rate can prevent new bone
formation. A high degradation rate cause defects at bone site. It was reported earlier that, if
the hydrolysis rate is higher during immersion, water molecules adsorbed by the scaffolds
and defects are formed [46]. For perfect appetite layer formation, the degradation rate
must be less than 2% per day [47]. Here, prepared hematite NPs showed the required rate.
The desired dimensions of the scaffolds relied on the implantation site. Thus, the clinical
criteria of bone implants necessitate well-dispersed and spherical NPs.

3.7. Antioxidant Study

Iron oxide NPs are being synthesized for bone implantations; therefore, the study of
their antioxidants is very important. The activity was carried out at different concentrations
of 15, 25, 50, 100, 150, and 200 µg/mL of iron oxide. The free scavenging radical activity
(RSA) improved with the concentration of iron oxide NPs, as shown in Figure 11. Eggshell-
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mediated hematite NPs showed 95% of RSA, which was higher, as reported earlier [48].
Ascorbic acid was used as the control and exhibited 96% antioxidant activity.
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The results demonstrate that the addition of eggshells enhanced the antioxidant ac-
tivity. The maximum antioxidant activity achieved by Das el al. [19] was 72.73%, with
800 g/mL concentration of NPs. FTIR spectra showed that the presence of polyphenols
groups worked as beneficial antioxidants [49,50]. It was also observed that, during synthe-
sis, iron and polyphenols were formed excessively, and they acted as antioxidant agents
by transporting one electron and a hydrogen atom [51,52]. The literature also suggests
that additional bioactive compounds may coat spherical NPs, enhancing antioxidant activ-
ity [53,54]. The same behavior was observed by Bedlovičová et al. [55] for green synthesized
NPs. Thus, hematite NPs scavenge free radicals either by donating electrons or by transfer-
ring hydrogen atoms to DPPH radicals. Consequently, they can cease the oxidation process
and stop oxidative damage to carbohydrates, proteins, lipids, and nucleic acids [56]. Thus,
hematite NPs can be promising agents against cancer and many other diseases in the future
due to their potential antioxidant activity.

3.8. In Vitro Bio-Mineralization Study

In vitro bio-mineralization activity was also assessed to check the deposition of miner-
als such as hydroxyapatite. For this, spherical NPs synthesized by 5 g eggshell-mediated
hematite were immersed in stimulated body fluid (SBF) for different time intervals. After
1 week of immersion, the deposition of hydroxyapatite was observed, but the mineral-
ization was less (Figure 12a). Significant bone formation was observed after 5 weeks of
mineralization (Figure 12c). After 5 weeks, all pores were filled with minerals and deposited
over the surface of the scaffold. The SEM images revealed that mineral deposition increased
with the deposition time [57,58].

The literature on in vitro mineralization shows that concentrations of calcium and
phosphorus form apatite layers on the surfaces of NPs [59,60]. Calcium and phosphorous
are extracted using eggshells, which aid in forming an appetite layer. The thickness of
the appetite layer increases as the time increases, and flakes like macromolecules with
dimensions of 0.1 cm to 1 cm are noticed. SEM images have shown that mineral deposition
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increases as the deposition time increases. The appetite layers formed on the surfaces of
iron oxide NPs are a sign of good activity. Eggshells and membranes added to NPs have
gained potential interest in scaffold and tissue engineering. The presence of eggshells
and membranes increases the interaction between the cell and the scaffold. Eggshells and
membranes also provide constituent elements, which are necessary for bone regeneration.
As compared to previously used materials for scaffolds, such as collagen, they lead to rapid
absorption and low hardness, along with low costs. On the other hand, microparticles of
additives may increase the sizes of NPs [61], and membranes, as porous materials, may
increase the porosity of the scaffolds, as observed in Figure 12.

Crystals 2023, 13, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 12. SEM images after mineralization of hematite NPs at (a) 1 week, (b) 3 weeks, and (c) 5 
weeks. 

The literature on in vitro mineralization shows that concentrations of calcium and 
phosphorus form apatite layers on the surfaces of NPs [59,60]. Calcium and phosphorous 
are extracted using eggshells, which aid in forming an appetite layer. The thickness of the 
appetite layer increases as the time increases, and flakes like macromolecules with dimen-
sions of 0.1 cm to 1 cm are noticed. SEM images have shown that mineral deposition in-
creases as the deposition time increases. The appetite layers formed on the surfaces of iron 
oxide NPs are a sign of good activity. Eggshells and membranes added to NPs have gained 
potential interest in scaffold and tissue engineering. The presence of eggshells and mem-
branes increases the interaction between the cell and the scaffold. Eggshells and mem-
branes also provide constituent elements, which are necessary for bone regeneration. As 
compared to previously used materials for scaffolds, such as collagen, they lead to rapid 
absorption and low hardness, along with low costs. On the other hand, microparticles of 
additives may increase the sizes of NPs [61], and membranes, as porous materials, may 
increase the porosity of the scaffolds, as observed in Figure 12.  

3.9. Antibacterial Activity 
Bone disorders are mainly caused by different infections due to by bacteria. Along 

with hardness and good mineralizers, scaffolds should have antibiotic properties. Antibi-
otic properties of nanomaterials make them more useful for medical science. The antibac-
terial activity of hematite prepared with eggshell extract was tested against the S. aureus 
and E. Coli bacterial strains. These sol–gel-synthesized materials showed a stronger anti-
bacterial effect, inhibiting the growth of the S. aureus and E. Coli bacterial strains up to 29 
mm and 23 mm, respectively (Figure 13a,b). The antibacterial results revealed that iron 

Figure 12. SEM images after mineralization of hematite NPs at (a) 1 week, (b) 3 weeks, and (c)
5 weeks.

3.9. Antibacterial Activity

Bone disorders are mainly caused by different infections due to by bacteria. Along with
hardness and good mineralizers, scaffolds should have antibiotic properties. Antibiotic
properties of nanomaterials make them more useful for medical science. The antibacterial
activity of hematite prepared with eggshell extract was tested against the S. aureus and
E. Coli bacterial strains. These sol–gel-synthesized materials showed a stronger antibacterial
effect, inhibiting the growth of the S. aureus and E. Coli bacterial strains up to 29 mm and
23 mm, respectively (Figure 13a,b). The antibacterial results revealed that iron oxide with
eggshells showed very good antibacterial activity by destroying bacterial cells. In fact,
the antibacterial activity depended upon the oxidative radicals. Materials synthesized by
organic additives have a large number of oxidative radicals, which are responsible for
cell damage.
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Mohamed et al. [62] prepared iron oxide NPs and studied their antibacterial potential
against gram-positive and gram-negative bacteria. The antibacterial activity of NPs could
be attributed to their large surface area to volume ratio (small size), which was shown by
TEM. Hence, this makes their penetration through the cell membrane easy and disturbs
the permeability of the cell membrane [63]. Sidkey et al. [64] prepared iron oxide NPs and
studied their effects against Aspergillus flavus, with similar results. Hence, iron oxide
NPs make direct contact with the surfaces of bacterial cells, which alters the membrane’s
permeability. Additionally, the production of ROS causes the destruction of DNA and
protein in bacteria, i.e., cell death. Thus, the application of hematite is an alternate therapy
to resolve the bacterial resistance against different pathogens.

Antibacterial Mechanism of Hematite NPs

Several studies have proven that hematite NPs are well-known antimicrobial agents against
a range of susceptible bacteria and fungi, and are comparable with other materials [65,66].

α-Fe2O3 acts as a double-edged sword, and is capable of damaging proteins, DNA,
and lipids via the Fenton reaction [67]. This reaction takes place between Fe2+ ions and
hydrogen peroxide (H2O2), which results in the formation of Fe3+ ions and hydroxyl
radicals. Further, Fe3+ ions and superoxide radicals (O2

−) react to form oxygen molecules
(O2) and regenerate Fe2+ ions (initial catalyst). Moreover, another main antibacterial
mechanism of hematite NPs is the generation of ROS (reactive oxygen species), which have
the ability to damage DNA molecules [68], such as through photocatalysis and Fenton
reactions [69]. Metal ions have the potential to bind with carboxyl (–COOH), amino (–NH),
and groups of proteins to inactivate or inhibit their functions partially or completely [70].
Moreover, α-Fe2O3 NPs can damage the cell walls of bacteria by direct contact with the cell
wall [71]. Also, they can pierce into the cytoplasm, resulting in vacuole formation and cell
wall destruction [72].

α-Fe2O3 NPs can also upset the F0/F1-ATPase function and cause a decrease in the
flow rate of H+ ions through the membrane, as well as the redox potential [73]. The
literature shows that neutral and positively charged iron oxide NPs facilitate a greater
reduction in Streptococcus mutans biofilms as compared to negatively charged iron oxide
NPs [74]. Iron oxide NPs exhibit the potential for adsorption and penetration into the
bacterial cell due to their attractive properties, including hydrophobicity, surface charge,
and high surface-to-volume ratio. All of the aforementioned factors result in the bacterial
cell’s dissociation and death [75,76]. Figure 14 illustrates the antibacterial mechanism. IONP
is gradually gaining recognition as antibacterial agent. However; when compare to other
metal oxide and metallic nanoparticles, the bactericidal properties of IONPs are relatively
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lesser. For example, the inhibitory actions of IONPs are often less pronounced than those of
other metal oxides, such as CuO or ZnO [77]. Despite the ambiguous antibacterial potential
of IONPs, significant studies have revealed the antibacterial activities of IONPs, which
mostly depend on various factors, including the type of microbial strain. Still, IONPs have
magnetic and paramagnetic properties which allow for the use of an alternating magnetic
field, facilitating the enhancement of the bactericidal action of Fe3O4 NPs against several
strains, including E. coli and S. aureus [78].
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4. Conclusions

Herein, we have demonstrated the preparation of phase-pure hematite (α-Fe2O3)
nanoparticles (NPs) using collagen protein and calcium carbonate extracted from eggshell
membranes and eggshells, respectively, as organic additives. To study the effect of additives
on the quality of the resulting materials, spherical hematite NPs were prepared by the
addition of different eggshell contents. The XRD results revealed the formation of a
hematite phase, which was found to be reinforced due to the eggshell content. FTIR
and RAMAN results further confirmed the phase purity and presence of polyphenols
as stabilizing agents, which have contributed to the antioxidant properties of the IONPs.
FE-SEM images illustrated the presence of spherical, non-agglomerated NPs with sizes
ranging from 40 to 50 nm. Phase purity and stability resulted in high values of hardness
and fracture toughness, which are suitable for bone implantation. In vitro biodegradation
in PBS led to slight decreases in weight and hardness after 72 h of immersion. Hematite
NPs showed 95% radical scavenging activity (RSA) and were good carriers against S. aureus
bacteria. A mineralization study of hematite NPs showed the formation of new bone,
which was confirmed by SEM images. The thickness of the appetite layer increased as the
time increased, and flakes like macromolecules with dimensions of 0.1 cm to 1 cm were
observed. Therefore, this study has demonstrated the biological potential of IONPs, which
can be useful for various purposes.
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