Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = ion sieving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2028 KiB  
Article
Physicochemical Properties of Demineralized Bone Matrix and Calcium Hydroxide Composites Used as Bone Graft Material
by Octarina, Florencia Livia Kurniawan, Firda Amalia Larosa, Olivia Nauli Komala and Meircurius Dwi Condro Surboyo
Crystals 2025, 15(6), 564; https://doi.org/10.3390/cryst15060564 - 15 Jun 2025
Viewed by 500
Abstract
Vertical bone defects can result in alveolar bone resorption, which may be addressed using composite grafts. A combination of demineralized bone matrix (DBM) and calcium hydroxide (Ca(OH)2) has potential as a bone substitute due to its biological and structural properties. This [...] Read more.
Vertical bone defects can result in alveolar bone resorption, which may be addressed using composite grafts. A combination of demineralized bone matrix (DBM) and calcium hydroxide (Ca(OH)2) has potential as a bone substitute due to its biological and structural properties. This study aimed to identify the optimal DBM–Ca(OH)2 ratio by evaluating their physicochemical properties relevant to bone regeneration. DBM gel and Ca(OH)2 powder were combined at ratios of 1:1, 2:1, 3:1, and 4:1. The mixtures were freeze-dried, ground, and sieved to create granules. The composites were analyzed in terms of their structural and chemical characteristics, including crystallinity, calcium ion release, functional group composition, particle size, surface morphology, and elemental distribution. Increasing the proportion of DBM reduced crystallinity and calcium ion release while influencing particle size. Among all groups, the 2:1 composite demonstrated the most balanced properties: moderate crystallinity, relatively high calcium release, and favorable particle size. Chemical analyses confirmed the presence and interaction of both organic and inorganic components, while elemental mapping showed a uniform distribution of the key elements essential for bone formation. The DBM–Ca(OH)2 composite at a 2:1 ratio has the most promising physicochemical profile, making it a strong candidate for bone graft applications. However, a limitation of this study is the absence of biological testing. Future research should investigate the in vitro and in vivo performance of this composite in bone regeneration. Full article
Show Figures

Figure 1

24 pages, 5043 KiB  
Review
Enhanced Lithium Recovery from Salt-Lake Brines via Advanced Nanofiltration Membranes: Polymeric Structure–Sieving Performance Relationships
by Ruilin Li, Yong Zheng, Xu Zhang, Mengfei Tan, Jinhui Wang and Guiying Tian
Polymers 2025, 17(11), 1440; https://doi.org/10.3390/polym17111440 - 22 May 2025
Viewed by 805
Abstract
Lithium and its compounds have become crucial energy metals and industrial necessities. Driven by technological advancements and expanding applications in energy storage and portable electronics, ensuring sustainable lithium supply chains is highly important. Thus, the development of efficient extraction methods from salt-lake brines, [...] Read more.
Lithium and its compounds have become crucial energy metals and industrial necessities. Driven by technological advancements and expanding applications in energy storage and portable electronics, ensuring sustainable lithium supply chains is highly important. Thus, the development of efficient extraction methods from salt-lake brines, particularly those with high Mg2+/Li+ ratios, has become a priority. Nanofiltration (NF) separation technology has recently emerged as a key process for selective lithium recovery, presenting remarkable advantages over conventional methods. This review systematically assesses the relationships between the polymeric structure and sieving performance of NF membranes for lithium extraction. This research emphasizes the influence of the membrane architecture on ionic selectivity and permeability. Advanced modification strategies for positively charged NF membranes are meticulously analyzed. These strategies include surface functionalization, copolymer design, and hybrid nanocomposite engineering, all of which are aimed at increasing the Mg2+/Li+ separation efficiency. Moreover, the review delves into innovative membrane module configurations and coupling processes (such as the integration of NF-electrodialysis) to satisfy the requirements of industrial scalability. Finally, the critical challenges and future research directions are highlighted. Our focus lies on cost-effective membrane fabrication, the optimization of long-term stability, and system-level process intensification. This comprehensive analysis not only provides an in-depth mechanistic understanding of high-selectivity lithium extraction from complex brines but also stimulates the rational design of next-generation membranes with precisely tailored ion-transport properties. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Figure 1

13 pages, 7000 KiB  
Communication
Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries
by Yi Li, Hongwei Huang, Haojun Liu, Dedong Shan, Xuezhong He, Lingkai Kong, Jing Wang, Qian Li and Jian Yang
Materials 2025, 18(11), 2415; https://doi.org/10.3390/ma18112415 - 22 May 2025
Viewed by 431
Abstract
The formation of unstable solid electrolyte interphases (SEIs) on the surface of lithium metal anodes poses a significant barrier to the commercialization of lithium metal batteries (LMBs). Rational modulation of solvation structures within the electrolytes emerged as one of the most effective strategies [...] Read more.
The formation of unstable solid electrolyte interphases (SEIs) on the surface of lithium metal anodes poses a significant barrier to the commercialization of lithium metal batteries (LMBs). Rational modulation of solvation structures within the electrolytes emerged as one of the most effective strategies to enhance interfacial stability in LMBs; however, this approach often compromises the structural stability of the bulk electrolyte. Herein, we present an innovative method that improves interface stability without adversely affecting the bulk electrolyte’s structural stability. By employing ZSM molecular sieves as efficient ion channels on the lithium metal anode surface—termed ZSM electrolytes—a more aggregated solvation structure is induced at the lithium metal interface, resulting in an anion-rich interphase. This anion-enriched environment promotes the formation of an SEI derived from anions, thereby enhancing the stability of the lithium metal interface. Consequently, Li||Cu cells utilizing the ZSM electrolyte achieve an average coulombic efficiency (CE) of 98.76% over 700 h. Moreover, LiFePO4||Li batteries exhibit stable cycling performance exceeding 900 cycles at a current density of 1 C. This design strategy offers robust support for effective interfacial regulation in lithium metal batteries. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 2347 KiB  
Article
Synthesis of Porous Lithium Ion Sieve with High Purity for Li+ Adsorption
by Jing Zhu, Xiyun Yang, Yongqiang Huang and Rongzheng Yao
Materials 2025, 18(10), 2373; https://doi.org/10.3390/ma18102373 - 20 May 2025
Cited by 1 | Viewed by 398
Abstract
With the depletion of solid lithium ore, extracting lithium from salt lake brine has become a critical focus for future endeavors. A four-step method was used to synthesize high-purity H1.6Mn1.6O4 for extracting Li+. Porous cubic Mn [...] Read more.
With the depletion of solid lithium ore, extracting lithium from salt lake brine has become a critical focus for future endeavors. A four-step method was used to synthesize high-purity H1.6Mn1.6O4 for extracting Li+. Porous cubic Mn2O3 was hydrothermally synthesized with carbon spheres and surfactants as templates. Then, it was converted to LiMnO2 by calcining with Li2CO3. After roasting and acid pickling, H1.6Mn1.6O4 was successfully synthesized. The impacts of calcination temperature, Li/Mn molar ratio and glucose addition on LiMnO2 composition, loss percentage of dissolved Mn in precursor, and the adsorption characteristics of the lithium ion sieve were studied. Glucose inhibited the formation of LiMn2O4 and promoted the formation of pure LiMnO2. The resulting precursor without impurities showed porous structure. After acid pickling, H1.6Mn1.6O4 showed a high-adsorption performance and excellent cycle performance. After five cycles, adsorption capacity remained above 30 mg/g, and the loss percentage of dissolved Mn stabilized at about 1%. The Li+–H+ exchange conformed to pseudo-second-order adsorption dynamics and the Langmuir adsorption isotherm equation, indicating that the adsorption process can be classified as monolayer chemical adsorption. Full article
Show Figures

Figure 1

23 pages, 3249 KiB  
Article
Process Optimization and Performance Characterization of Preparing 4A Molecular Sieves from Coal Gangue
by Dongpeng Zhang, Laiyang Zhu, Tiantian Ma, Xiwen Liang, Nie Sun and Fei Liu
Symmetry 2025, 17(4), 603; https://doi.org/10.3390/sym17040603 - 16 Apr 2025
Cited by 1 | Viewed by 505
Abstract
Coal mining and washing processes generate substantial amounts of coal gangue, posing significant environmental challenges. Coal gangue as a solid waste is rich in SiO2 and Al2O3, with the SiO2/Al2O3 molar ratio closely [...] Read more.
Coal mining and washing processes generate substantial amounts of coal gangue, posing significant environmental challenges. Coal gangue as a solid waste is rich in SiO2 and Al2O3, with the SiO2/Al2O3 molar ratio closely aligned with the ideal composition of 4A molecular sieves. In this study, through a synergistic pretreatment process involving low-temperature oxidation and hydrochloric acid leaching, the Fe2O3 content in coal gangue was reduced from 7.8 wt% to 1.1 wt%, markedly enhancing raw material purity. The alkali fusion–hydrothermal synthesis parameters were optimized via orthogonal experiments—calcination (750 °C, 2 h), aging (60 °C, 2 h), and crystallization (95 °C, 6 h) to maintain cubic symmetry, yielding highly crystalline 4A zeolite. Characterization via XRD, calcium ion adsorption capacity, SEM, and FTIR elucidated the regulatory mechanism of calcination on kaolinite phase transformation and the critical role of alkali fusion in activating silicon–aluminum component release. The as-synthesized zeolite exhibited a cubic morphology, high crystallinity, and sharp diffraction peaks consistent with the 4A zeolite phase. The pH of the zero point charge (pHZPC) of the 4A molecular sieve is 6.13. The 4A molecular sieve has symmetry-driven adsorption sites, and the adsorption of Cu2+ follows a monolayer adsorption mechanism (Langmuir model, R2 = 0.997) with an average standard enthalpy change of 38.96 ± 4.47 kJ/mol and entropy change of 0.1277 ± 0.0148 kJ/mol, adhering to pseudo-second-order kinetics (R2 = 0.999). The adsorption process can be divided into two stages. This study provides theoretical and technical insights into the high-value utilization of coal gangue. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

16 pages, 5725 KiB  
Article
Utilization of Coal Combustion Residues as Supplementary Cementitious Materials for Sustainable Concrete
by Lidya E. Guteta, Daba S. Gedafa and Bruce Dockter
Sustainability 2025, 17(8), 3376; https://doi.org/10.3390/su17083376 - 10 Apr 2025
Viewed by 615
Abstract
Carbon dioxide emissions from cement production are a current environmental challenge. This research attempted to evaluate the pozzolanic reaction of residuals from coal-fired power plants, such as coal bottom ash (CBA) and coal boiler slag (CBS), as a supplementary cementitious material to lessen [...] Read more.
Carbon dioxide emissions from cement production are a current environmental challenge. This research attempted to evaluate the pozzolanic reaction of residuals from coal-fired power plants, such as coal bottom ash (CBA) and coal boiler slag (CBS), as a supplementary cementitious material to lessen the deleterious effect on the environment. The residues’ fineness modulus and specific gravity were determined using the No. 325 sieve and Le Chatelier flask, respectively. Chemical characterizations were conducted using X-ray diffraction (XRD) and X-ray fluorescence (XRF). The results indicated that the percent passing of both residues was greater than 66%, as the American Society for Testing Materials (ASTM) requires, and their specific gravity was comparable to that of cement. Subsequently, in concrete specimens, 20% of the weight of cement was replaced by CBA and CBS to determine the strength development of fresh and hardened characteristics compared with the control specimens. Experimental findings revealed that by the 90th day, concrete made with CBA achieved 98% of the compressive strength of the control concrete, while the concrete made with CBS reached 79% of the control concrete’s compressive strength. Moreover, CBA-based concrete achieved 97% of the flexural strength of the control concrete, while CBS-based concrete outperformed the control by 2% on the 90th day. A lower severity level of chloride ion penetration by both CBA- and CBS-based concrete was achieved in the rapid chloride penetration test, indicating the durability of the concrete. Full article
Show Figures

Figure 1

18 pages, 5357 KiB  
Review
Exploring the Potential of Zeolites for Sustainable Environmental Applications
by Maura Mancinelli and Annalisa Martucci
Sustain. Chem. 2025, 6(1), 9; https://doi.org/10.3390/suschem6010009 - 17 Mar 2025
Cited by 4 | Viewed by 1754
Abstract
Zeolites are amongst the most extensively explored crystalline microporous materials because of their variable chemical composition, framework geometry, pore dimensions, and tunability. Due to their high surface area, adsorption selectivity, mechanical, biological, chemical, and thermal stability, these molecular sieves are widely used in [...] Read more.
Zeolites are amongst the most extensively explored crystalline microporous materials because of their variable chemical composition, framework geometry, pore dimensions, and tunability. Due to their high surface area, adsorption selectivity, mechanical, biological, chemical, and thermal stability, these molecular sieves are widely used in adsorption, catalysis, ion exchange, and separation technologies. This short review highlights the notable progress achieved in leveraging the properties of zeolite materials for multiple applications, including gas separation and storage, adsorption, catalysis, chemical sensing, and biomedical applications. The aim is to emphasize their capabilities by showcasing important achievements that have driven research in this field toward new and unforeseen areas of material chemistry. Full article
Show Figures

Graphical abstract

16 pages, 6337 KiB  
Article
Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance
by Liqing Xing, Liping Lin, Jiaxin Guo, Xinping He and Chunhai Yi
Membranes 2025, 15(3), 77; https://doi.org/10.3390/membranes15030077 - 3 Mar 2025
Viewed by 1137
Abstract
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores [...] Read more.
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores based on crown ether were introduced into the PA layer using a layer-by-layer interfacial polymerization (LbL-IP) method. After interfacial polymerization between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), the di(aminobenzo)-18-crown-6 (DAB18C6) solution in methanol was poured on the membrane to react with the residual TMC. The cyclic micropores of DAB18C6 provided the membrane with rapid water transport channels and improved ion rejection due to its hydrophilicity and size sieving effect. The membranes were characterized by FTIR, XPS, SEM, and AFM. Compared to unmodified membranes, the water contact angle decreased from 54.1° to 31.6° indicating better hydrophilicity. Moreover, the crown ether-modified membrane exhibited both higher permeability and enhanced rejection performance. The permeability of the crown ether-modified membrane was more than ten times higher than unmodified membranes with a rejection above 95% for Na2SO4, MgSO4, MgCl2, and NaCl solution. These results highlight the potential of this straightforward surface grafting strategy and the modified membranes for advanced water treatment technologies, particularly in addressing seawater desalination challenges. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

17 pages, 4442 KiB  
Article
Controllable Preparation of Low-Cost Coal Gangue-Based SAPO-5 Molecular Sieve and Its Adsorption Performance for Heavy Metal Ions
by Le Kang, Boyang Xu, Pengfei Li, Kai Wang, Jie Chen, Huiling Du, Qianqian Liu, Li Zhang and Xiaoqing Lian
Nanomaterials 2025, 15(5), 366; https://doi.org/10.3390/nano15050366 - 27 Feb 2025
Cited by 13 | Viewed by 995
Abstract
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal [...] Read more.
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal gangue was used in this study as the primary material for the synthesis of a fully coal gangue-based phosphorus-silicon-aluminum (SAPO-5) molecular sieve through a hydrothermal process. The SAPO-5 molecular sieve was characterized through several methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface analysis, Fourier-transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS), to examine its mineral phases, microstructure, pore characteristics, and material structure. Adsorption performance towards wastewater with Cd2+ and Pb2+ ions was investigated. It was found that the adsorption processes of these ions are well described by both the pseudo-second-order model and the Langmuir isotherm. According to the Langmuir model, the coal gangue-based SAPO-5 molecular sieve exhibited maximum adsorption capacities of 93.63 mg·g−1 for Cd2+ and 157.73 mg·g−1 for Pb2+. After five cycles, the SAPO-5 molecular sieve retained strong stability in adsorbing Cd2+ and Pb2+, with residual adsorption capacities of 77.03 mg·g−1 for Cd2+ and 138.21 mg·g−1 for Pb2+. The excellent adsorption performance of the fully solid waste coal gangue-based SAPO-5 molecular sieve is mainly attributed to its mesoporous channel effects, the complexation of -OH functional groups, and electrostatic attraction. Full article
Show Figures

Figure 1

18 pages, 8695 KiB  
Article
Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications
by Sarvarjon Kurbonov, Martin Pisárčik, Miloš Lukáč, Zsolt Czigány, Zoltán Kovács, István Tolnai, Manfred Kriechbaum, Vasyl Ryukhtin, Viktor Petrenko, Mikhail V. Avdeev, Qiang Tian, Ana-Maria Lacrămă and László Almásy
Materials 2025, 18(4), 773; https://doi.org/10.3390/ma18040773 - 10 Feb 2025
Viewed by 1009
Abstract
Mesoporous silica sieves have been prepared through sol–gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed [...] Read more.
Mesoporous silica sieves have been prepared through sol–gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed reaction, using a tetraethyl orthosilicate precursor and bis-quaternary ammonium gemini surfactants with diester spacers of varied lengths as pore-forming agents. The effect of the spacer length on the particle morphology was studied using nitrogen porosimetry, small-angle X-ray scattering (SAXS), ultra-small-angle neutron scattering, scanning, and transmission electron microscopy (SEM, TEM). The results revealed that for all spacer lengths, a long-range hexagonal pore ordering developed in the materials. The silica particles were nearly spherical, with sizes below 1 micrometer, and a weak dependence of the mean particle size on the spacer length could be observed. The template removal procedure had a strong influence on the porosity: calcination caused a moderate shrinkage of the pores while retaining the hexagonal structure, whereas treatment with acidified ethanol resulted in only partial removal of the surfactants; however, the hexagonal structure was severely destroyed. The applicability of the obtained calcined materials as adsorbents for heavy metal ions from water was studied with the example of Pb(II). A high sorption capacity of 110 mg/g was obtained in batch experiments, at pH 5 and 4 h contact time. Full article
Show Figures

Figure 1

15 pages, 5276 KiB  
Article
ZIF-8-Embedded Cation-Exchange Membranes with Improved Monovalent Ion Selectivity for Capacitive Deionization
by Eui-Gyu Han, Ji-Hyeon Lee and Moon-Sung Kang
Membranes 2025, 15(1), 19; https://doi.org/10.3390/membranes15010019 - 9 Jan 2025
Cited by 1 | Viewed by 1680
Abstract
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal–organic [...] Read more.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal–organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios. The resulting membranes were systematically characterized using diverse electrochemical methods. The ZIF-8-embedded CEMs demonstrated a sieving effect based on differences in ion size and hydration energy, achieving excellent permselectivity for monovalent ions. MCDI tests using the prepared CEMs showed a Na+ ion removal rate exceeding 99% in Na+/Mg2+ and Na+/Ca2+ mixed feed solutions, outperforming a commercial membrane (CSE, Astom Corp., Tokyo, Japan), which achieved a removal rate of 94.1%. These findings are expected to provide valuable insights for advancing not only MCDI but also other electro-membrane processes capable of selectively separating specific ions. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

23 pages, 1149 KiB  
Review
Novel and Sustainable Materials for the Separation of Lithium, Rubidium, and Cesium Ions from Aqueous Solutions in Adsorption Processes—A Review
by Małgorzata A. Kaczorowska
Materials 2024, 17(24), 6158; https://doi.org/10.3390/ma17246158 - 17 Dec 2024
Cited by 3 | Viewed by 1748
Abstract
The growing demand for alkali metals (AMs), such as lithium, cesium, and rubidium, related to their wide application across various industries (e.g., electronics, medicine, aerospace, etc.) and the limited resources of their naturally occurring ores, has led to an increased interest in methods [...] Read more.
The growing demand for alkali metals (AMs), such as lithium, cesium, and rubidium, related to their wide application across various industries (e.g., electronics, medicine, aerospace, etc.) and the limited resources of their naturally occurring ores, has led to an increased interest in methods of their recovery from secondary sources (e.g., brines, wastewater, waste leachates). One of the dynamically developing research directions in the field of separation of AMs ions from various aqueous solutions is the search for novel, efficient, and “green” materials that could be used in adsorption processes, also on a larger industrial scale. This review concerns the latest achievements (mainly from 2023 to 2024) in the development of innovative adsorption materials (e.g., ion sieves, aluminum-based adsorbents, mineral adsorbents, composites, resins) for the separation of Li+, Cs+, and Rb+ ions from solutions, with particular emphasis on their most important advantages and limitations, as well as their potential impact on the environment. Full article
Show Figures

Figure 1

27 pages, 4876 KiB  
Article
Halogenated Cobalt Bis-Dicarbollide Strong Acids as Reusable Homogeneous Catalysts for Fatty Acid Esterification with Methanol or Ethanol
by Pavel Kaule, Václav Šícha, Jan Macháček, Yelizaveta Naumkina and Jan Čejka
Int. J. Mol. Sci. 2024, 25(24), 13263; https://doi.org/10.3390/ijms252413263 - 10 Dec 2024
Viewed by 1451
Abstract
The most commonly used homogeneous catalyst for fatty acid esterification is a corrosive sulphuric acid. However, this requires costly investment in non-corrosive equipment, presents a safety risk, is time consuming, and increases effluent generation. In this study, inorganic 3D heteroborane cluster strong acids [...] Read more.
The most commonly used homogeneous catalyst for fatty acid esterification is a corrosive sulphuric acid. However, this requires costly investment in non-corrosive equipment, presents a safety risk, is time consuming, and increases effluent generation. In this study, inorganic 3D heteroborane cluster strong acids are employed for the first time as homogeneous catalysts. Three novel isomeric tetrachlorido and tetrabromido derivatives of 3,3′-commo-bis[undecahydrido-closo-1,2-dicarba-3-cobaltadodecaborate](1−) [1] were synthesised and fully characterised using a range of analytical techniques, including NMR, TLC, HPLC, MS, UV-Vis, melting point (MP), CHN analyses, and XRD. Ultimately, H3O[8,8′-Cl2-1] was identified as the most efficient, reusable, and non-corrosive homogeneous catalyst for the esterification of four fatty acids. The reactions are conducted in an excess of alcohol at reflux. The effective absorption of water vapour provided by the molecular sieves maximises acid conversion. The hydrophobic dye Sudan black B was employed as an acid-base indicator to facilitate a comparison of the H0 acidity function of sulphuric acid and halogenated heteroboranoic acids when dissolved together in methanol. The 23Na NMR analysis demonstrated that the application of dry methanol resulted in the displacement of Na+ ions from zeolite, which subsequently exchanged the H3O+ ions of the acid. This process led to a gradual reduction in the efficiency of the catalysts, particularly with repeated use. The solution to this issue is to regenerate the catalyst on the ion exchanger following each reaction. In contrast to the published methods, our new approach meets 10 of 12 green chemistry principles. Full article
Show Figures

Figure 1

14 pages, 4285 KiB  
Article
Full Tailored Metal Content NCM Regeneration from Spent Lithium-Ion Battery Mixture Under Mild Condition
by Alpha Chi Him Tsang, Shaobo Ouyang, Yang Lv, Chi Chung Lee, Chi-Wing Tsang and Xiao-Ying Lu
Electrochem 2024, 5(4), 546-559; https://doi.org/10.3390/electrochem5040035 - 2 Dec 2024
Viewed by 1605
Abstract
Mild conditioned, second-life ternary nickel–cobalt–manganese (NCM) black powder regeneration from spent lithium-ion batteries’ (LIBs) black powder mixture was demonstrated after mild conditioned p-toluenesulphuric acid (PTA)-assisted wet leaching. The NCM ratio was tailored to several combinations (333, 523, 532, and 622) by adding a [...] Read more.
Mild conditioned, second-life ternary nickel–cobalt–manganese (NCM) black powder regeneration from spent lithium-ion batteries’ (LIBs) black powder mixture was demonstrated after mild conditioned p-toluenesulphuric acid (PTA)-assisted wet leaching. The NCM ratio was tailored to several combinations (333, 523, 532, and 622) by adding a suitable amount of metal (Ni, Co, Mn)-sulphate salt to the leachate. Regenerated NCM was obtained by co-precipitation with sodium hydroxide pellets and ammonia pH buffering solution, followed by lithium (Li) sintering under ambient air and size sieving. The obtained regenerated NCM powder was used for the energy storage materials (ESM) in coin cell (Li half-cell, CR2032) evaluation. Systematic characterization of regenerated NCM showed that the NCM ratio was close to the target value as assigned in the tailored process, and regenerated 622 (R622) exhibited strong activity in CR2032 coin cell testing among all four ratios with a maximum discharge capacity of 196.6 mAh/g. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Graphical abstract

31 pages, 7065 KiB  
Review
NMR Relaxation to Probe Zeolites: Mobility of Adsorbed Molecules, Surface Acidity, Pore Size Distribution and Connectivity
by Marina G. Shelyapina
Molecules 2024, 29(22), 5432; https://doi.org/10.3390/molecules29225432 - 18 Nov 2024
Cited by 2 | Viewed by 1980
Abstract
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and [...] Read more.
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts. Current trends in the development of zeolite-based catalysts include the adaptation of their cationic composition, acidity and porosity for a specific catalytic process. Recent studies have shown that mesoporosity is beneficial to the rational design of catalysts with controlled product selectivity and an improved catalyst lifetime due to its efficient mass-transport properties. Nuclear magnetic resonance (NMR) has proven to be a reliable method for studying zeolites. Solid-state NMR spectroscopy allows for the quantification of both Lewis and Brønsted acidity in zeolite catalysts and, nowadays, 27Al and 29Si magic angle spinning NMR spectroscopy has become firmly established in the set of approved methods for characterizing zeolites. The use of probe molecules opens up the possibility for the indirect measurement of the characteristics of acid sites. NMR relaxation is less common, although it is especially informative and enlightening for studying the mobility of guest molecules in the porous matrix. Moreover, the NMR relaxation of guest molecules and NMR cryoporometry can quantify pore size distribution on a broader scale (compared to traditional methods), which is especially important for systems with complex pore organization. Over the last few years, there has been a growing interest in the use of 2D NMR relaxation techniques to probe porous catalysts, such as 2D T1T2 correlation to study the acidity of the surface of catalysts and 2D T2T2 exchange to study pore connectivity. This contribution provides a comprehensive review of various NMR relaxation techniques for studying porous media and recent results of their applications in probing micro- and mesoporous zeolites, mainly focused on the mobility of adsorbed molecules, the acidity of the zeolite surface and the pore size distribution and connectivity of zeolites with hierarchical porosity. Full article
Show Figures

Figure 1

Back to TopTop