Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = intranasal exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 216 KiB  
Article
Absence of Adverse Effects on Pulmonary Histopathology and Functions Following Inhalation Exposure to Chloromethylisothiazolinone/Methylisothiazolinone
by Sam Kacew and Esref Demir
Toxics 2025, 13(6), 482; https://doi.org/10.3390/toxics13060482 - 6 Jun 2025
Viewed by 473
Abstract
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, [...] Read more.
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, were conducted by various Korean Governmental Agencies on these products to investigate whether there is a causal relationship between these products and the development of lung diseases. In particular, the humidifier disinfectant product Kathon, containing chloromethylisothiazolinone and methylisothiazolinone (CMIT and MIT), when directly introduced into inhalation chambers at varying concentrations for up to 13 weeks, produced no significant histopathological alterations and no marked changes in pulmonary function parameters. Further, there was no evidence of cytotoxicity; total and differential cell counts did not differ from control. In addition, the levels of cytokine markers of inflammation were not markedly altered. In contrast to published papers utilizing intratracheal and intranasal instillation, where the animal is anesthetized and chemical bypasses the defense mechanisms in the respiratory tract, then reaches the pulmonary region, ignoring recommended dose levels was found to initiate fibrotic responses in mice and rats. However, the usefulness of experimental results to extrapolate to humans obtained following intratracheal and intranasal instillation studies is of limited value because the data generated did not use a realistic design and appropriate dosimetry. Therefore, these findings have significant drawbacks in their use to characterize an inhalation risk for pulmonary fibrosis in humans and cannot be used for the extrapolation of such risk to humans. It is thus evident that the inhalation data generated by the Korean Regulatory Agencies are more realistic and show that exposure to CMIT and MIT does not initiate pulmonary fibrosis. Although inhalation studies still do not fully replicate real-world human exposure scenarios and have limitations for direct extrapolation to humans, they are nevertheless more appropriate than intratracheal or intranasal instillation models. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

24 pages, 8106 KiB  
Article
Multi-Omics Analysis of the Epigenetic Effects of Inflammation in Murine Type II Pneumocytes
by Jenna A. Fernandez, Qiyuan Han, Andrew T. Rajczewski, Thomas Kono, Nicholas A. Weirath, Alexander S. Lee, Abdur Rahim and Natalia Y. Tretyakova
Int. J. Mol. Sci. 2025, 26(10), 4692; https://doi.org/10.3390/ijms26104692 - 14 May 2025
Viewed by 735
Abstract
Chronic inflammation plays a central role in the pathogenesis of lung diseases including asthma, long COVID, chronic obstructive pulmonary disease (COPD), and lung cancer. Lipopolysaccharide (LPS) is a potent inflammatory agent produced by Gram-negative bacteria and also found in cigarette smoke. Our earlier [...] Read more.
Chronic inflammation plays a central role in the pathogenesis of lung diseases including asthma, long COVID, chronic obstructive pulmonary disease (COPD), and lung cancer. Lipopolysaccharide (LPS) is a potent inflammatory agent produced by Gram-negative bacteria and also found in cigarette smoke. Our earlier study revealed that the intranasal exposure of A/J mice to LPS for 7 days altered gene expression levels in alveolar Type II epithelial cells (AECIIs), which serve as precursors to lung adenocarcinoma and are also preferentially targeted by SARS-CoV-2. In the present work, we employed a comprehensive multi-omics approach to characterize changes in DNA methylation/hydroxymethylation, gene expression, and global protein abundances in the AECIIs of A/J mice following the sub-chronic exposure to LPS and after a 4-week recovery period. Exposure to LPS led to hypermethylation at regulatory elements within the genome such as enhancer regions and expression changes in genes known to play a role in lung cancer tumorigenesis. Changes in protein abundance were consistent with an inflammatory phenotype and also included tumor suppressor proteins. Integration of the multi-omics data resulted in a model where LPS-driven inflammation in AECIIs triggers epigenetic changes that, along with genetic mutations, may contribute to lung cancer development. Full article
(This article belongs to the Special Issue Molecular Research of Multi-omics in Cancer)
Show Figures

Figure 1

13 pages, 1045 KiB  
Article
Rapid and Highly Sensitive Detection of Ricin in Biological Fluids Using Optical Modulation Biosensing
by Eliana Levy, Linoy Golani-Zaidie, Shmuel Burg, Efi Makdasi, Ron Alcalay, Reut Falach, Ofir Schuster and Amos Danielli
Biosensors 2025, 15(5), 295; https://doi.org/10.3390/bios15050295 - 6 May 2025
Viewed by 863
Abstract
Ricin, a highly toxic glycoprotein derived from the seeds of Ricinus communis, poses significant risks in bioterrorism and toxicology due to its rapid absorption and ease of dissemination. Rapid, ultra-sensitive detection is crucial for timely medical intervention and implementing security measures. However, existing [...] Read more.
Ricin, a highly toxic glycoprotein derived from the seeds of Ricinus communis, poses significant risks in bioterrorism and toxicology due to its rapid absorption and ease of dissemination. Rapid, ultra-sensitive detection is crucial for timely medical intervention and implementing security measures. However, existing methods often lack sufficient sensitivity or require lengthy processing, limiting their utility for trigger-to-treat scenarios. Here, we present an optical modulation biosensing (OMB)-based ricin assay capable of detecting low concentrations of ricin in buffer, plasma, and biological samples. The assay combines magnetic-bead-based target capture with fluorescent signal enhancement, achieving a limit of detection (LoD) of 15 pg/mL in buffer and 62 pg/mL in plasma, with a 4-log dynamic range. Optimized protocols reduced the assay time to 60 min, maintaining an LoD of 114 pg/mL in plasma while preserving accuracy and reproducibility. The assay successfully detected ricin in bronchoalveolar lavage fluid and serum from mice that were intranasally exposed to ricin, with signals persisting up to 48 h post exposure. Its rapid, high-throughput capabilities and simplified workflow make the OMB-based assay a powerful tool for toxicology, forensic analysis, and counter-bioterrorism. This study highlights the OMB platform’s potential as a sensitive and robust diagnostic tool for detecting hazardous biological agents. Full article
(This article belongs to the Special Issue Optical Bioimaging and Biosensing)
Show Figures

Figure 1

13 pages, 2451 KiB  
Article
Molecular Mechanism of Perfluorooctane Sulfonate-Induced Lung Injury Mediated by the Ras/Rap Signaling Pathway in Mice
by Jianhao Peng, Jinfei He, Chenglong Ma and Jiangdong Xue
Toxics 2025, 13(4), 320; https://doi.org/10.3390/toxics13040320 - 20 Apr 2025
Viewed by 504
Abstract
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, has raised significant public health concerns because of its widespread environmental presence and potential toxicity. Epidemiological studies have linked PFOS exposure to respiratory diseases, but the underlying molecular mechanisms remain poorly understood. Male C57 BL/6J mice [...] Read more.
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, has raised significant public health concerns because of its widespread environmental presence and potential toxicity. Epidemiological studies have linked PFOS exposure to respiratory diseases, but the underlying molecular mechanisms remain poorly understood. Male C57 BL/6J mice were divided into a control group receiving Milli-Q water, a low-dose PFOS group (0.2 mg/kg/day), and a high-dose PFOS group (1 mg/kg/day) administered via intranasal instillation for 28 days. Lung tissue transcriptome sequencing revealed significantly enriched differentially expressed genes in the Ras and Rap signaling pathways. Key genes including Rap1b, Kras, and BRaf as well as downstream genes, such as MAPK1 and MAP2K1, exhibited dose-dependent upregulation in the high-dose PFOS exposure group. Concurrently, the downstream effector proteins MEK, ERK, ICAM-1, and VEGFa were significantly elevated in bronchoalveolar lavage fluid (BALF). These alterations are mechanistically associated with increased oxidative stress, inflammatory cytokine release, and pulmonary tissue damage. The results indicated that PFOS-induced lung injury is likely predominantly mediated through the activation of the Rap1b- and Kras-dependent BRaf-MEK-ERK axis. These findings highlight the critical role of Ras/Rap signaling pathways in PFOS-associated respiratory toxicity and underscore the need to develop therapeutic interventions targeting these pathways to mitigate associated health risks. Full article
(This article belongs to the Special Issue Health Risk Assessment of Exposure to Emerging Contaminants)
Show Figures

Graphical abstract

17 pages, 2493 KiB  
Article
Experimental Efficacy of an Alphavirus Vectored RNA Particle Vaccine Against Porcine Parainfluenza Virus-1 in Conventional Weaned Pigs
by Michael Welch, Karen Krueger, Jianqiang Zhang, Pablo Piñeyro, Mark Mogler, Erin Strait and Phillip Gauger
Viruses 2025, 17(4), 565; https://doi.org/10.3390/v17040565 - 14 Apr 2025
Viewed by 618
Abstract
Parainfluenza viruses are a common cause of respiratory illness in many species. In this study, experimental, alphavirus-derived RNA particle vaccines either with or without adjuvant were evaluated against porcine parainfluenza virus 1 (PPIV1) challenge and compared to live virus exposure. Groups of ten, [...] Read more.
Parainfluenza viruses are a common cause of respiratory illness in many species. In this study, experimental, alphavirus-derived RNA particle vaccines either with or without adjuvant were evaluated against porcine parainfluenza virus 1 (PPIV1) challenge and compared to live virus exposure. Groups of ten, three-week-old pigs were vaccinated intramuscularly with an adjuvanted RNA particle (RPAdj/C) or non-adjuvanted RP (RP/C) or administered an intranasal live exposure (LE/C) dose of PPIV1 at 0- and 21-days post vaccination (DPV) followed by challenge with PPIV1 at 40 DPV. In addition, two groups were included as non-vaccinated, non-challenged (NV/NC) and non-vaccinated, challenged (NV/C) controls. Intranasal virus exposure and RP vaccination, regardless of adjuvant, reduced PPIV1 shedding in nasal swabs by 5 days post inoculation (DPI). All vaccinated or exposed pigs seroconverted as shown by enzyme-linked immunosorbent assay and serum virus neutralization. The antibody isotype detected in bronchoalveolar lavage fluid (BALF) LE/C was predominantly IgA while RP vaccination induced an IgG response. Reduced PPIV1 antigen was observed in the LE/C, RP/C and RPAdj/C groups in lung, trachea, or nasal turbinate epithelium. Additionally, the RPAdj vaccine significantly reduced nasal shedding compared to NV/C pigs although not as much as LE/C pigs. These results suggest vaccination could mitigate PPIV1 infection in commercial systems. Full article
(This article belongs to the Special Issue Novel Vaccines for Porcine Viruses)
Show Figures

Figure 1

8 pages, 1824 KiB  
Article
D-2-Hydroxyglutarate Attenuates Sinonasal Inflammation in Murine Allergic Rhinitis
by Anuj Tharakan, Ankit Kumar, Carmen Camarena, Daniel H. Conrad and Rebecca K. Martin
Allergies 2025, 5(2), 13; https://doi.org/10.3390/allergies5020013 - 9 Apr 2025
Viewed by 767
Abstract
Introduction: Allergic rhinitis (AR) is largely driven by IgE-induced immune cell activation, which promotes allergen-induced upper airway inflammation. The regulatory mechanisms of IgE synthesis in AR are poorly understood. Several analyses associate single nucleotide polymorphisms (SNPs) which reduce the expression of the D2HGDH [...] Read more.
Introduction: Allergic rhinitis (AR) is largely driven by IgE-induced immune cell activation, which promotes allergen-induced upper airway inflammation. The regulatory mechanisms of IgE synthesis in AR are poorly understood. Several analyses associate single nucleotide polymorphisms (SNPs) which reduce the expression of the D2HGDH gene with AR. D2HGDH encodes an enzyme that converts D-2-hydroxyglutarate (D2HG) to α-ketoglutarate (α-KG). This study aims to clarify the relationship between AR and SNPs in D2HGDH. Methods: Mice were treated with vehicle control or octyl-D2HG prior to intranasal exposure to Alternaria alternata. Draining lymph nodes (dLNs) were then evaluated for IgE-producing cells and T-cell polarization. Next, mice were exposed to intranasal Alternaria on days 0, 10, 20, and 27–30 and were treated intranasally with octyl-D2HG or vehicle control on days 20 and 27. Nasal inflammation was analyzed in nasal lavage fluid (NLF) cellularity and antigen-specific IgE production. Results: The administration of D2HG prior to Alternaria exposure suppressed IgE synthesis (p < 0.01) and Th2 cell polarization (p < 0.01) in dLNs. In a murine model of AR, D2HG administration reduced overall cellular infiltrates and eosinophils in NLF. Further, antigen-specific IgE in NLF was significantly reduced in mice treated with D2HG (p < 0.05). Conclusions: An analysis of the regulatory landscape surrounding the rs34290285 SNP demonstrates that the downregulation of D2HGDH expression reduces the risk of AR. Downregulation of D2HGDH likely results in accumulation of D2HG intracellularly, suggesting that D2HG is protective against allergic rhinitis. We show that the administration of D2HG impairs IgE production, leading to the amelioration of allergic sinonasal inflammation in a murine model of AR. These findings suggest a causal relationship between D2HGDH expression, D2HG levels, and allergic rhinitis risk. Full article
(This article belongs to the Section Rhinology/Allergic Rhinitis)
Show Figures

Figure 1

29 pages, 12098 KiB  
Article
Mechanistic Advances in the Therapeutic Application of Bixin for Lung Inflammation In Vitro and In Vivo
by Alexsandro Tavares Figueiredo-Junior, Bruno Clemente Brandão Marques, Douglas Galdino dos Santos, Wesley Leandro Gouveia, Raysa Magali Pillpe Meza, Luzineide Wanderley Tinoco, Lídia Moreira Lima, Samuel Santos Valenca and Manuella Lanzetti
Pharmaceuticals 2025, 18(4), 530; https://doi.org/10.3390/ph18040530 - 5 Apr 2025
Viewed by 627
Abstract
Background: Nrf2 plays a key role in regulating the antioxidant response against oxidative stress. Therefore, it is imperative to examine the advantages of Nrf2 activation by new small molecules capable of inhibiting the Nrf2-Keap1 protein interaction that do not present electrophilic sites, since [...] Read more.
Background: Nrf2 plays a key role in regulating the antioxidant response against oxidative stress. Therefore, it is imperative to examine the advantages of Nrf2 activation by new small molecules capable of inhibiting the Nrf2-Keap1 protein interaction that do not present electrophilic sites, since electrophilic compounds have intrinsic toxicity. The bixin pigment has been used as a form of treatment and prevention of several pathological conditions in animal models since it was described as an Nrf2 activator without electrophilic sites. This study aims to synthetize a soluble derivate KBx (potassium bixinate) and evaluate its ability to activate Nrf2/ARE in a model of exposure to cigarette smoke extract (CSE; in vitro) and intranasal LPS administration (in vivo). Methods: In the in vivo study, C57BL/6 mice were pretreated with 200 mg/kg of KBx (gavage) during 5 consecutive days and then challenged with 60 µg of LPS i.n. for 16 h. Bronchoalveolar lavage was collected to examine cytokines dosage. In the in vitro study, RAW 264.7 macrophages were exposed to CSE and post-treated with KBx to evaluate their ability to revert the redox imbalance caused by the stressor. Results: KBx was characterized using mass spectrometry (433.1778 m/z). KC levels were increased in the LPS group (p = 0.021), and KBx inhibited this (p = 0.001). IL-10 levels were decreased (p = 0.055) in the LPS group that was prevented when pretreated with KBx (p = 0.037). The in vitro study showed KBx to be a more potent derivate of bixin through its ability to intercept ROS formation with three-fold more potency, and it showed an anti-inflammatory propriety by reducing the nuclear translocation of p65 (p < 0.001). Conclusions: In conclusion, these data suggest that KBx was able to activate the Nrf2/ARE pathway and intercept ROS formation induced by CSE and LPS in both in vivo and in vitro studies. Full article
Show Figures

Figure 1

12 pages, 465 KiB  
Review
Dexmedetomidine: Shifting Paradigms in Neonatal Sedation and Pain Control
by Kok Joo Chan and Srinivas Bolisetty
Children 2025, 12(4), 444; https://doi.org/10.3390/children12040444 - 30 Mar 2025
Viewed by 1593
Abstract
Background: Newborns, including preterm infants, are capable of responding to pain. Recurrent pain exposure is associated with suboptimal motor development, cognitive impairments, abnormal brain growth, and maladapted nociceptive reactions. Problem: Current agents, primarily opioids and benzodiazepines, raise major concerns due to their adverse [...] Read more.
Background: Newborns, including preterm infants, are capable of responding to pain. Recurrent pain exposure is associated with suboptimal motor development, cognitive impairments, abnormal brain growth, and maladapted nociceptive reactions. Problem: Current agents, primarily opioids and benzodiazepines, raise major concerns due to their adverse effects, including insufficient sedation or analgesia, withdrawal, depressed respiratory effort, tolerance, and occasional paradoxical agitation. Commonly used drugs such as midazolam and morphine have been shown to induce neuroapoptosis and neurodevelopmental abnormalities in animal studies. Evaluation—Dexmedetomidine: As a specific alpha-2 adrenergic agonist, dexmedetomidine causes a significantly lower reduction in breathing effort. It has over 800 times greater affinity for alpha-2 receptors compared to alpha-1 receptors. Common side effects include bradycardia and hypotension. Prolonged use may necessitate a transition to clonidine during the weaning process. Dexmedetomidine can be administered intravenously as a bolus or infusion or intranasally. Indications include sedation and analgesia for mechanical ventilation, therapeutic hypothermia, procedural premedication, and as an adjunct to inhalational anesthesia and nerve-blocking agents. Research across varying age groups has demonstrated that dexmedetomidine shortens periods of invasive ventilation and decreases the need for other sedatives. Neonatal studies suggest that dexmedetomidine may help accelerate the achievement of full enteral feeds and can be safely administered within specific dosage ranges without causing significant adverse events that would necessitate abrupt discontinuation. Conclusions: Dexmedetomidine can be used alone or in combination with other agents. By increasing the use of dexmedetomidine, it is possible to reduce the dosage of concurrent medications, thereby minimizing the risk of complications while still achieving the desired sedation and analgesia. Full article
(This article belongs to the Special Issue Renal and Cardiovascular Consequences of Prematurity)
Show Figures

Figure 1

19 pages, 5115 KiB  
Article
Sex-Specific Anti-Inflammatory Effects of a Ketogenic Diet in a Mouse Model of Allergic Airway Inflammation
by Carolyn D. Ekpruke, Omar Borges-Sosa, Christiane A. Hassel, Dustin Rousselle, Lyidia Dinwiddie, Maksat Babayev, Ahmed Bakare and Patricia Silveyra
Int. J. Mol. Sci. 2025, 26(7), 3046; https://doi.org/10.3390/ijms26073046 - 26 Mar 2025
Viewed by 887
Abstract
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of [...] Read more.
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of ketogenic diets are documented in cardiovascular diseases, their impact on asthma, especially regarding sex-specific differences, remains unexplored. Few studies on diet and asthma have considered sex as a biological factor. To test the hypothesis that a ketogenic diet affects airway inflammation in a sex-specific manner, we used a mouse allergic airway inflammation model. Male and female C57BL/6J mice (3–4 weeks old, n = 5–6/group) were fed a ketogenic diet or normal chow for 12 weeks. From weeks 7 to 12, mice were challenged intranasally with house dust mite allergens (HDM) 5 days/week to induce airway inflammation. Lung tissue was analyzed 72 h post-exposure using flow cytometry to assess immune cell populations, and data were analyzed with two-way ANOVA. The ketogenic diet increased body weight in allergen-exposed mice, with a greater effect in males than females (p = 0.0512). Significant sex–diet interactions were noted for alveolar macrophages, CD103+, CD11B+, and plasmacytoid dendritic cells (p < 0.05). Eosinophil reductions were observed in males but not females on the ketogenic diet. The diet also increased NKT cells and decreased NK cells in males but not females (p < 0.001). These findings highlight sex-specific effects of ketogenic diets on lung immune responses, with stronger impacts in males. Full article
(This article belongs to the Special Issue Molecular Research in Asthma and Allergy)
Show Figures

Figure 1

15 pages, 3240 KiB  
Article
Therapeutic Effects of TN13 Peptide on Acute Respiratory Distress Syndrome and Sepsis Models In Vivo
by Jae-Eun Byun, Jae-Won Lee, Eun Ji Choi, Juhyun Lee, Seok Han Yun, Chan Ho Park, Hanna Kim, Mi Sun Kim, Suk Ran Yoon, Tae-Don Kim, Ji-Yoon Noh, Sang-Hyun Min, Hyun-A. Seong, Kyung-Seop Ahn, Inpyo Choi and Haiyoung Jung
J. Clin. Med. 2025, 14(6), 1804; https://doi.org/10.3390/jcm14061804 - 7 Mar 2025
Viewed by 932
Abstract
Background/Objectives: Regulation of acute inflammatory responses is crucial for host mortality and morbidity induced by pathogens. The pathogenesis of acute respiratory distress syndrome (ARDS) and sepsis are associated with systemic inflammation. p38 MAPK is a crucial regulator of inflammatory responses and is a [...] Read more.
Background/Objectives: Regulation of acute inflammatory responses is crucial for host mortality and morbidity induced by pathogens. The pathogenesis of acute respiratory distress syndrome (ARDS) and sepsis are associated with systemic inflammation. p38 MAPK is a crucial regulator of inflammatory responses and is a potential target for acute inflammatory diseases, including ARDS and sepsis. We investigated the therapeutic effects of the TAT-TN13 peptide (TN13) on severe inflammatory diseases, including ARDS and sepsis, in vivo. Methods: To establish the ARDS model, C57BL/6 mice were intranasally (i.n.) administered lipopolysaccharide (LPS; 5 mg/kg, 40 µL) to induce lung inflammation. As a positive control, dexamethasone (DEX; 0.2 mg/kg) was administered intraperitoneally (i.n.) 1 h post-LPS exposure. In the experimental groups, TN13 was administered intranasally (i.n.) at doses of 2.5 mg or 5 mg/kg at the same time point. In the LPS-induced sepsis model, mice received an intraperitoneal injection of LPS (20 mg/kg) to induce systemic inflammation. TN13 (25 mg/kg, i.p.) was administered 1 h after LPS treatment. Control mice received phosphate-buffered saline (PBS). Lung histopathology, inflammatory cell infiltration, cytokine levels, and survival rates were assessed to evaluate TN13 efficacy. Results: TN13 significantly reduced inflammatory cell recruitment and cytokine production in the lungs, thereby mitigating LPS-induced ARDS. In the sepsis model, TN13 treatment improved survival rates by suppressing inflammatory responses. Mechanistically, TN13 exerted its effects by inhibiting the p38 MAPK/NF-κB signaling pathway. Conclusions: These results collectively suggested that TN13 could be an effective treatment option for severe inflammatory diseases. Full article
Show Figures

Figure 1

14 pages, 9022 KiB  
Article
Enhanced Pathogenic Consequences Induced by a Seven-Amino-Acid Extension in the G Protein of the HRSV BA9 Genotype
by Na Wang, Jingjing Song, Lei Cao, Naiying Mao, Yuqing Shi, Jie Jiang, Wuyang Zhu and Yan Zhang
Int. J. Mol. Sci. 2025, 26(5), 2081; https://doi.org/10.3390/ijms26052081 - 27 Feb 2025
Cited by 1 | Viewed by 589
Abstract
In a previous outbreak of the human respiratory syncytial virus (HRSV), we identified a variant strain of genotype BA9 with a seven-amino-acid extension (Q-R-L-Q-S-Y-A) at the C-terminus of the attachment protein (G). To assess the impact of this extension on the virulence of [...] Read more.
In a previous outbreak of the human respiratory syncytial virus (HRSV), we identified a variant strain of genotype BA9 with a seven-amino-acid extension (Q-R-L-Q-S-Y-A) at the C-terminus of the attachment protein (G). To assess the impact of this extension on the virulence of HRSV, two full-length infectious clones using the wild strain of genotype BA9 as a backbone, one containing the seven-amino-acid extension (rRSV BA9 WT), and the other deleting this extension (rRSV BA9 Δ7AA), were successfully rescued using a reverse genetics system. The biological properties and virulence of the two rescued viruses were then compared and analyzed in vitro and in vivo. Compared to the rRSV BA9 Δ7AA, the rRSV BA9 WT exhibited a larger plaque size and a more pronounced suppression of the host cell innate immune response in vitro (IFN-β levels: 154.33 pg/mL vs. 11.27 pg/mL). The rRSV BA9 WT demonstrated increased adaptability in mice, with a 10-fold higher lung viral load and a stronger inflammatory response following intranasal exposure. Our study primarily demonstrated that the C-terminal extension of the G protein of the HRSV can enhance viral virulence, underscoring the importance of virological surveillance in the prevention and treatment of severe HRSV-related disease. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 2nd Edition)
Show Figures

Figure 1

32 pages, 2054 KiB  
Review
Neuropathogenesis of Encephalitic Alphaviruses in Non-Human Primate and Mouse Models of Infection
by Caitlin M. Woodson, Shannon K. Carney and Kylene Kehn-Hall
Pathogens 2025, 14(2), 193; https://doi.org/10.3390/pathogens14020193 - 14 Feb 2025
Viewed by 1870
Abstract
Encephalitic alphaviruses, including eastern, Venezuelan, and western equine encephalitis virus (EEEV, VEEV, and WEEV, respectively) are New World alphaviruses primarily transmitted by mosquitos that cause debilitating and lethal central nervous system (CNS) disease in both humans and horses. Despite over one hundred years [...] Read more.
Encephalitic alphaviruses, including eastern, Venezuelan, and western equine encephalitis virus (EEEV, VEEV, and WEEV, respectively) are New World alphaviruses primarily transmitted by mosquitos that cause debilitating and lethal central nervous system (CNS) disease in both humans and horses. Despite over one hundred years of research on these viruses, the underpinnings of the molecular mechanisms driving virally induced damage to the CNS remain unresolved. Moreover, virally induced encephalitis following exposure to these viruses causes catastrophic damage to the CNS, and survivors of infection often suffer from permanent neurological sequelae as a result of sustained neuroinflammation and neurological insults encountered. Animal models are undoubtedly invaluable tools in biomedical research, where physiologically relevant models are required to study pathogenesis and host–pathogen interactions. Here, we review the literature to examine nonhuman primate (NHP) and mouse models of infection for EEEV, VEEV, and WEEV. We provide a brief overview of relevant background information for each virus, including geography, epidemiology, and clinical disease. The primary focus of this review is to describe neuropathological features associated with CNS disease in NHP and mouse models of infection and compare CNS invasion and neuropathogenesis for aerosol, intranasal, and subcutaneous routes of exposure to EEEV, VEEV, and WEEV. Full article
(This article belongs to the Special Issue Neuropathogenesis of Arboviruses)
Show Figures

Figure 1

12 pages, 1554 KiB  
Article
Safety and Intranasal Retention of a Broad-Spectrum Anti-SARS-CoV-2 Monoclonal Antibody SA55 Nasal Spray in Healthy Volunteers: A Phase I Clinical Trial
by Chaoying Hu, Yibo Zhou, Xing Meng, Jianhua Li, Jinxia Chen, Zhifang Ying, Xiaoliang Sunney Xie, Yaling Hu, Yunlong Cao and Ronghua Jin
Pharmaceutics 2025, 17(1), 43; https://doi.org/10.3390/pharmaceutics17010043 - 31 Dec 2024
Cited by 1 | Viewed by 1915
Abstract
Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals. Methods: This [...] Read more.
Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals. Methods: This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design. Healthy participants aged 18–65 years were enrolled and received a single dose of the SA55 nasal spray (1 mg or 2 mg) or multiple doses of SA55 nasal spray/placebo for 7 days (1 or 2 mg/dose, 3 or 6 doses/day). Safety monitoring was conducted throughout the study. Nasal swabs and venous blood samples were collected to analyze local drug concentration/neutralization, systemic exposure, and immunogenicity. Results: From 2 June to 11 August 2023, 80 participants were enrolled and received study intervention. The severity of adverse reactions (ADRs) reported during the study was mild in all cases, and all ADRs were laboratory test abnormalities without corresponding symptoms or vital signs. A total of 9 ADRs were reported, of which all were mild in severity. Overall ADR incidence rate was 16.67% (8/48) in single-dose groups and 4.17% (1/24) in multiple-dose groups. The nasal local drug concentration and neutralizing activity were generally stable within 4–8 h, with favorable neutralization activity against Omicron BF.7 and XBB strains. Conclusions: This study demonstrated favorable safety and tolerability of the SA55 nasal spray in healthy volunteers, exhibited satisfactory neutralizing activity against Omicron variants intranasally, and indicated low systemic toxicity risk. Full article
(This article belongs to the Special Issue Nasal Drug Delivery: Challenges and Future Opportunities)
Show Figures

Figure 1

13 pages, 1972 KiB  
Article
PM2.5 Exposure Triggers Hypothalamic Oxidative and ER Stress Leading to Depressive-like Behaviors in Rats
by Hi-Ju Kim, Ji-Hee Kim, Subo Lee, Phuong Anh Do, Ji Yong Lee, Seung-Kuy Cha and Jinhee Lee
Int. J. Mol. Sci. 2024, 25(24), 13527; https://doi.org/10.3390/ijms252413527 - 17 Dec 2024
Cited by 2 | Viewed by 1808
Abstract
Epidemiological studies have linked fine dust pollution to depression, yet the underlying mechanisms remain unclear. Oxidative stress and endoplasmic reticulum (ER) stress are known contributors to depression, but their induction by particulate matter (PM), particularly PM2.5, in animal models has been limited. This [...] Read more.
Epidemiological studies have linked fine dust pollution to depression, yet the underlying mechanisms remain unclear. Oxidative stress and endoplasmic reticulum (ER) stress are known contributors to depression, but their induction by particulate matter (PM), particularly PM2.5, in animal models has been limited. This study aimed to establish a rat model of PM2.5-induced depression-like behaviors and elucidate the underlying molecular mechanisms. Adult male Sprague–Dawley rats received daily intranasal PM2.5 for four weeks. Behavioral assessments, including the open field test (OFT), forced swim test (FST), and light-dark box (LDB) test, were conducted weekly. PM2.5-exposed rats displayed depressive-like behaviors, particularly in the FST, reflecting decreased motivation and learned helplessness. Molecular analyses indicated a specific increase in ER stress markers (CHOP, eIF2α, GRP78, and P16) and NOX4 in the hypothalamus, while other brain regions (striatum, cortex, and hippocampus) were not as pronounced. Additionally, PM2.5 exposure reduced tyrosine hydroxylase (TH) levels in the hypothalamus, suggesting impaired dopamine synthesis. These findings indicate that PM2.5 induces depressive-like behaviors via hypothalamic ER stress and oxidative stress pathways, leading to dopaminergic dysfunction. Targeting oxidative and ER stress within the hypothalamus may offer new therapeutic strategies for treating depression associated with environmental pollutants. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Figure 1

22 pages, 7402 KiB  
Article
Development of Nanocomposite Microspheres for Nasal Administration of Deferiprone in Neurodegenerative Disorders
by Radka Boyuklieva, Plamen Katsarov, Plamen Zagorchev, Silviya Abarova, Asya Hristozova and Bissera Pilicheva
J. Funct. Biomater. 2024, 15(11), 329; https://doi.org/10.3390/jfb15110329 - 5 Nov 2024
Cited by 1 | Viewed by 1626
Abstract
Elevated brain iron levels are characteristic of many neurodegenerative diseases. As an iron chelator with short biological half-life, deferiprone leads to agranulocytosis and neutropenia with a prolonged therapeutic course. Its inclusion in sustained-release dosage forms may reduce the frequency of administration. On the [...] Read more.
Elevated brain iron levels are characteristic of many neurodegenerative diseases. As an iron chelator with short biological half-life, deferiprone leads to agranulocytosis and neutropenia with a prolonged therapeutic course. Its inclusion in sustained-release dosage forms may reduce the frequency of administration. On the other hand, when administered by an alternative route of administration, such as the nasal route, systemic exposure to deferiprone will be reduced, thereby reducing the occurrence of adverse effects. Direct nose-to-brain delivery has been raised as a non-invasive strategy to deliver drugs to the brain, bypassing the blood–brain barrier. The aim of the study was to develop and characterize nanocomposite microspheres suitable for intranasal administration by combining nano- and microparticle-based approaches. Nanoparticles with an average particle size of 213 ± 56 nm based on the biodegradable polymer poly-ε-caprolactone were developed using the solvent evaporation method. To ensure the deposition of the particles in the nasal cavity and avoid exhalation or deposition into the small airways, the nanoparticles were incorporated into composite structures of sodium alginate obtained by spray drying. Deferiprone demonstrated sustained release from the nanocomposite microspheres and high iron-chelating activity. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

Back to TopTop