Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = interval type-2 fuzzy neural network (IT2FNN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3336 KB  
Communication
Evaluation of Interval Type-2 Fuzzy Neural Super-Twisting Control Applied to Single-Phase Active Power Filters
by Jiacheng Wang, Xiangguo Li and Juntao Fei
Appl. Sci. 2024, 14(8), 3271; https://doi.org/10.3390/app14083271 - 12 Apr 2024
Cited by 5 | Viewed by 1673
Abstract
This research introduces an improved control strategy for an active power filter (APF) system. It utilizes an adaptive super-twisting sliding mode control (STSMC) scheme. The proposed approach integrates an interval type-2 fuzzy neural network with a self-feedback recursive structure (IT2FNN-SFR) to enhance the [...] Read more.
This research introduces an improved control strategy for an active power filter (APF) system. It utilizes an adaptive super-twisting sliding mode control (STSMC) scheme. The proposed approach integrates an interval type-2 fuzzy neural network with a self-feedback recursive structure (IT2FNN-SFR) to enhance the overall performance of the APF system. The IT2FNN with STSMC proposed here consists of two components, with one being IT2FNN-SFR, which demonstrates robustness for uncertain systems and the ability to utilize historical information. The IT2FNN-SFR estimator is used to approximate the unknown nonlinear function within the APF. Simultaneously, the STSMC component is integrated to reduce system chattering, improving control precision and overall system performance. STSMC combines the robustness and simplicity of traditional sliding mode control, effectively addressing the chattering problem. To mitigate inaccuracies and complexities associated with manual parameter setting, an adaptive law of sliding mode gain is formulated to achieve optimal gain solutions. This adaptive law is designed within the STSMC framework, facilitating parameter optimization. Experimental validation is conducted to verify the harmonic suppression capability of the control strategy. The THD corresponding to the designed control algorithm is 4.16%, which is improved by 1.24% and 0.55% compared to ASMC and STSMC, respectively, which is below the international standard requirement of 5%. Similarly, the designed controller also demonstrates advantages in dynamic performance: when the load decreases, it is 4.72%, outperforming ASMC and STSMC by 1.15% and 0.38%, respectively; when the load increases, it is 3.87%, surpassing ASMC and STSMC by 1.07% and 0.36%, respectively. Full article
(This article belongs to the Special Issue New Technologies for Power Electronic Converters and Inverters)
Show Figures

Figure 1

20 pages, 16324 KB  
Article
Adaptive Super-Twisting Sliding Mode Control of Active Power Filter Using Interval Type-2-Fuzzy Neural Networks
by Jiacheng Wang, Yunmei Fang and Juntao Fei
Mathematics 2023, 11(12), 2785; https://doi.org/10.3390/math11122785 - 20 Jun 2023
Cited by 9 | Viewed by 1811
Abstract
Aiming at the unknown uncertainty of an active power filter system in practical operation, combining the advantages of self-feedback structure, interval type-2 fuzzy neural network, and super-twisting sliding mode, an adaptive super-twisting sliding mode control method of interval type-2 fuzzy neural network with [...] Read more.
Aiming at the unknown uncertainty of an active power filter system in practical operation, combining the advantages of self-feedback structure, interval type-2 fuzzy neural network, and super-twisting sliding mode, an adaptive super-twisting sliding mode control method of interval type-2 fuzzy neural network with self-feedback recursive structure (IT2FNN-SFR STSMC) is proposed in this paper. IT2FNN has an uncertain membership function, which can enhance the nonlinear ability and robustness of the network. The historical information will be stored and utilized by the self-feedback recursive structure (SFR) at runtime. Therefore, the novel IT2FNN-SFR is designed to improve the dynamic approximation effect of the neural network and reduce the dependence of the controller on the actual mathematical model. The adaptive rate of each weight of the neural network is designed by the Lyapunov method and gradient descent (GD) algorithm to ensure the convergence and stability of the system. Super-twisting sliding mode control (STSMC) has strong robustness, which can effectively reduce system chattering, and improve control accuracy and system performance. The gain of the integral term in the STSMC is set as a constant, and the other gain is changed adaptively whose adaptive rate is deduced through the stability proof of the neural network, which greatly reduces the difficulty of parameter adjustment. The harmonic suppression ability of the designed control strategy is verified by simulation experiments. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 2nd Edition)
Show Figures

Figure 1

20 pages, 8586 KB  
Article
Adaptive Interval Type-2 Fuzzy Neural Network Sliding Mode Control of Nonlinear Systems Using Improved Extended State Observer
by Lunhaojie Liu, Juntao Fei and Xianghua Yang
Mathematics 2023, 11(3), 605; https://doi.org/10.3390/math11030605 - 25 Jan 2023
Cited by 9 | Viewed by 2536
Abstract
An adaptive sliding mode control (ASMC) based on improved linear extended state observer (LESO) is proposed for nonlinear systems with unknown and uncertain dynamics. An improved LESO is designed to estimate total disturbance of the uncertain nonlinear system, and an interval type-2 fuzzy [...] Read more.
An adaptive sliding mode control (ASMC) based on improved linear extended state observer (LESO) is proposed for nonlinear systems with unknown and uncertain dynamics. An improved LESO is designed to estimate total disturbance of the uncertain nonlinear system, and an interval type-2 fuzzy neural network (IT2FNN) is used to optimize and approximate the observe bandwidth of LESO, and the adaptive parameter tuning is realized based on the gradient descent (GD) method. Based on the total disturbance estimated by LESO, an ASMC strategy is designed to ensure the system stability. By adapting the sliding mode gain, the observation performance of LESO compared to the total disturbance can be better utilized, and system chattering is reduced. Finally, some simulation results are given which show that the proposed control strategy has a good control effect, strong practicability, and wide versatility. Full article
(This article belongs to the Special Issue Analysis and Control of Dynamical Systems)
Show Figures

Figure 1

25 pages, 9890 KB  
Article
Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model
by Chunyan Wang, Xiang Wang, Danfeng Wu, Minchi Kuang and Zhengtong Li
Remote Sens. 2022, 14(15), 3704; https://doi.org/10.3390/rs14153704 - 2 Aug 2022
Cited by 9 | Viewed by 2441
Abstract
This paper proposes a land cover classification method that combines a Gaussian regression model (GRM) with an interval type-2 fuzzy neural network (IT2FNN) model as a classification decision model. Problems such as the increase in the complexity of ground cover, the increase in [...] Read more.
This paper proposes a land cover classification method that combines a Gaussian regression model (GRM) with an interval type-2 fuzzy neural network (IT2FNN) model as a classification decision model. Problems such as the increase in the complexity of ground cover, the increase in the heterogeneity of homogeneous regions, and the increase in the difficulty of classification due to the increase in similarity in different regions are overcome. Firstly, the local spatial information between adjacent pixels was introduced into the Gaussian model in image gray space to construct the GRM. Then, the GRM was used as the base model to construct the interval binary fuzzy membership function model and characterize the uncertainty of the classification caused by meticulous land cover data. Thirdly, the upper and lower boundaries of the membership degree of the training samples in all categories and the principle membership degree as input were used to build the IT2FNN model. Finally, in the membership space, the neighborhood relationship was processed again to further overcome the classification difficulties caused by the increased complexity of spatial information to achieve a classification decision. The classical method and proposed method were used to conduct qualitative and quantitative experiments on synthetic and real images of coastal areas, suburban areas, urban areas, and agricultural areas. Compared with the method considering only one spatial neighborhood relationship and the classical classification method without a classification decision model, for images with relatively simple spatial information, the accuracy of the interval type-2 fuzzy neural network Gaussian regression model (IT2FNN_GRM) was improved by 1.3% and 8%, respectively. For images with complex spatial information, the accuracy of the proposed method increased by 5.0% and 16%, respectively. The experimental results prove that the IT2FNN_GRM method effectively suppressed the influence of regional noise in land cover classification, with a fast running speed, high generalization ability, and high classification accuracy. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

18 pages, 6780 KB  
Article
Design and Verification of an Interval Type-2 Fuzzy Neural Network Based on Improved Particle Swarm Optimization
by Cheng-Jian Lin, Shiou-Yun Jeng, Hsueh-Yi Lin and Cheng-Yi Yu
Appl. Sci. 2020, 10(9), 3041; https://doi.org/10.3390/app10093041 - 27 Apr 2020
Cited by 15 | Viewed by 3320
Abstract
In this study, we proposed an interval type-2 fuzzy neural network (IT2FNN) based on an improved particle swarm optimization (PSO) method for prediction and control applications. The noise-suppressing ability of the proposed IT2FNN was superior to that of the traditional type-1 fuzzy neural [...] Read more.
In this study, we proposed an interval type-2 fuzzy neural network (IT2FNN) based on an improved particle swarm optimization (PSO) method for prediction and control applications. The noise-suppressing ability of the proposed IT2FNN was superior to that of the traditional type-1 fuzzy neural network. We proposed dynamic group cooperative particle swarm optimization (DGCPSO) with superior local search ability to overcome the local optimum problem of traditional PSO. The proposed model and related algorithms were verified through the accuracy of prediction and wall-following control of a mobile robot. Supervised learning was used for prediction, and reinforcement learning was used to achieve wall-following control. The experimental results demonstrated that DGCPSO exhibited superior prediction and wall-following control. Full article
Show Figures

Figure 1

Back to TopTop