Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = interleukin-1 receptor-associated kinase 4 (IRAK4)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7029 KiB  
Article
In Silico Exploration of Natural Antioxidants for Sepsis Drug Discovery
by Celia María Curieses Andrés, Elena Bustamante Munguira, Celia Andrés Juan, Fernando Lobo, Eduardo Pérez-Lebeña and José Manuel Pérez de la Lastra
Molecules 2025, 30(11), 2288; https://doi.org/10.3390/molecules30112288 - 23 May 2025
Viewed by 637
Abstract
Sepsis, a life-threatening condition characterized by immune dysregulation and organ damage, remains a significant clinical challenge. Natural antioxidant compounds (NAOs) such as quercetin, EGCG, resveratrol, curcumin, and chlorogenic acid have shown promising anti-inflammatory and anti-apoptotic effects in preclinical models of sepsis and related [...] Read more.
Sepsis, a life-threatening condition characterized by immune dysregulation and organ damage, remains a significant clinical challenge. Natural antioxidant compounds (NAOs) such as quercetin, EGCG, resveratrol, curcumin, and chlorogenic acid have shown promising anti-inflammatory and anti-apoptotic effects in preclinical models of sepsis and related conditions, yet the molecular mechanisms underlying their actions remain incompletely defined. In this study, we performed comprehensive molecular docking analyses to investigate the binding affinities and interaction profiles of these NAOs with three key proteins central to inflammatory and apoptotic signaling: Toll-like receptor 4 (TLR-4), interleukin-1 receptor-associated kinase 1 (IRAK1), and caspase-3. Our results demonstrate that all five compounds exhibit favorable binding affinities with these targets, forming multiple hydrogen bonds and hydrophobic interactions with critical active site residues. Notably, curcumin and EGCG consistently displayed the strongest binding affinities across the three proteins, with docking scores comparable to or surpassing those of reference inhibitors. Resveratrol demonstrated highly stable binding poses, particularly with caspase-3, while quercetin and chlorogenic acid showed moderate but reproducible affinities. Overall, this study provides new mechanistic insights into how NAOs may target central mediators of inflammation and cell death. Experimental validation is essential to confirm these interactions, assess binding affinities, and fully elucidate the therapeutic potential of NAOs in sepsis. Full article
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
FLT3 and IRAK4 Inhibitor Emavusertib in Combination with BH3-Mimetics in the Treatment of Acute Myeloid Leukemia
by Katja Seipel, Harpreet Mandhair, Ulrike Bacher and Thomas Pabst
Curr. Issues Mol. Biol. 2024, 46(4), 2946-2960; https://doi.org/10.3390/cimb46040184 - 29 Mar 2024
Cited by 1 | Viewed by 2438
Abstract
Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor [...] Read more.
Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML. Full article
(This article belongs to the Special Issue Molecular Research and Pathological Mechanism of Leukemia)
Show Figures

Graphical abstract

16 pages, 3030 KiB  
Article
New Insights into Polymorphisms in Candidate Genes Associated with Incidence of Postparturient Endometritis in Ossimi Sheep (Ovis aries)
by Fatmah A. Safhi and Ahmed Ateya
Agriculture 2023, 13(12), 2273; https://doi.org/10.3390/agriculture13122273 - 15 Dec 2023
Cited by 3 | Viewed by 1687
Abstract
This study examined the genes related to immunity, metabolism, and antioxidants that may interact with the prevalence of postpartum endometritis in Ossimi sheep. We used fifty endometritis-positive Ossimi sheep and fifty that appeared to be normal. For the purpose of taking blood samples, [...] Read more.
This study examined the genes related to immunity, metabolism, and antioxidants that may interact with the prevalence of postpartum endometritis in Ossimi sheep. We used fifty endometritis-positive Ossimi sheep and fifty that appeared to be normal. For the purpose of taking blood samples, each ewe had its jugular vein pierced. Nucleotide sequence differences for the immunological (alpha-2-macroglobulin, toll-like receptor 2, transforming growth factor beta, interleukin 1 receptor-associated kinase 3, high-mobility group box 1, Fc alpha and Mu receptor, and inducible nitric oxide synthase), metabolic (ADAM metallopeptidase with thrombospondin type 1 motif 20, potassium sodium-activated channel subfamily T member 2, Mitogen-activated protein kinase kinase kinase 4, FKBP prolyl isomerase 5, and relaxin family peptide receptor 1), and antioxidant (superoxide dismutase, catalase, NADH: ubiquinone oxidoreductase subunit s5, and Heme oxygenase-1) genes were found among sheep with endometritis and those in good condition utilizing PCR-DNA sequencing. Fisher’s exact test revealed a significant difference in the probability of dispersal of all significant nucleotide changes between ewe groups with and without endometritis (p ˂ 0.01). In endometritis ewes, there was a considerable up-regulation of the expression levels of A2M, TLR2, IRAK3, HMGB1, FCAMR, iNOS, ADAMTS20, KCNT2, MAP3K4, FKBP5, RXFP1, and HMOX1. Conversely, there was a down-regulation of the genes that encode TGF-β, SOD, CAT, and NDUFS5. The kind of marker and its frequency in postparturient endometrtits significantly impacted the transcript levels of the indicators under analysis. The results validate that nucleotide changes and gene manifestation outlines in these candidates are significant predictors of the prevalence of endometritis in sheep. Full article
(This article belongs to the Special Issue Welfare, Behavior and Health of Farm Animals)
Show Figures

Figure 1

31 pages, 6839 KiB  
Article
Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy
by Mohammed Y. Behairy, Refaat A. Eid, Hassan M. Otifi, Heitham M. Mohammed, Mohammed A. Alshehri, Ashwag Asiri, Majed Aldehri, Mohamed Samir A. Zaki, Khaled M. Darwish, Sameh S. Elhady, Nahla H. El-Shaer and Muhammad Alaa Eldeen
J. Pers. Med. 2023, 13(12), 1648; https://doi.org/10.3390/jpm13121648 - 26 Nov 2023
Cited by 2 | Viewed by 2782
Abstract
Interleukin-1-receptor-associated kinase 4 (IRAK4) possesses a crucial function in the toll-like receptor (TLR) signaling pathway, and the dysfunction of this molecule could lead to various infectious and immune-related diseases in addition to cancers. IRAK4 genetic variants have been linked to various types of [...] Read more.
Interleukin-1-receptor-associated kinase 4 (IRAK4) possesses a crucial function in the toll-like receptor (TLR) signaling pathway, and the dysfunction of this molecule could lead to various infectious and immune-related diseases in addition to cancers. IRAK4 genetic variants have been linked to various types of diseases. Therefore, we conducted a comprehensive analysis to recognize the missense variants with the most damaging impacts on IRAK4 with the employment of diverse bioinformatics tools to study single-nucleotide polymorphisms’ effects on function, stability, secondary structures, and 3D structure. The residues’ location on the protein domain and their conservation status were investigated as well. Moreover, docking tools along with structural biology were engaged in analyzing the SNPs’ effects on one of the developed IRAK4 inhibitors. By analyzing IRAK4 gene SNPs, the analysis distinguished ten variants as the most detrimental missense variants. All variants were situated in highly conserved positions on an important protein domain. L318S and L318F mutations were linked to changes in IRAK4 secondary structures. Eight SNPs were revealed to have a decreasing effect on the stability of IRAK4 via both I-Mutant 2.0 and Mu-Pro tools, while Mu-Pro tool identified a decreasing effect for the G198E SNP. In addition, detrimental effects on the 3D structure of IRAK4 were also discovered for the selected variants. Molecular modeling studies highlighted the detrimental impact of these identified SNP mutant residues on the druggability of the IRAK4 ATP-binding site towards the known target inhibitor, HG-12-6, as compared to the native protein. The loss of important ligand residue-wise contacts, altered protein global flexibility, increased steric clashes, and even electronic penalties at the ligand–binding site interfaces were all suggested to be associated with SNP models for hampering the HG-12-6 affinity towards IRAK4 target protein. This given model lays the foundation for the better prediction of various disorders relevant to IRAK4 malfunction and sheds light on the impact of deleterious IRAK4 variants on IRAK4 inhibitor efficacy. Full article
Show Figures

Figure 1

16 pages, 5442 KiB  
Article
Saikosaponin-b2 Inhibits Primary Liver Cancer by Regulating the STK4/IRAK1/NF-κB Pathway
by Chanhao Lei, Zihan Gao, Xingzhi Lv, Yanxue Zhu, Ruifang Li and Sanqiang Li
Biomedicines 2023, 11(10), 2859; https://doi.org/10.3390/biomedicines11102859 - 22 Oct 2023
Cited by 6 | Viewed by 2227
Abstract
The development of primary liver cancer (PLC) is associated with chronic liver inflammation and the loss of associated tumor suppressor genes, which characterizes inflammation-related tumors. In this study, we aimed to explore the effect of saikosaponin-b2 (SS-b2) on the development of PLC and [...] Read more.
The development of primary liver cancer (PLC) is associated with chronic liver inflammation and the loss of associated tumor suppressor genes, which characterizes inflammation-related tumors. In this study, we aimed to explore the effect of saikosaponin-b2 (SS-b2) on the development of PLC and its effect of the STK4 expression and IRAK1/NF-κB signaling axis. In vitro and in vivo experiments showed that SS-b2 exerted potent anti-inflammatory and antitumor effects. A PLC model was induced in vivo by treating male BALB/c mice with diethylnitrosamine, while an inflammatory model was induced in vitro by exposing RAW 264.7 macrophages to lipopolysaccharides (LPS). After treating cancer mice with SS-b2, the serum levels of alpha-fetoprotein, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly reduced. Ki67 expression also decreased. The carcinomatous lesions of the liver were attenuated. Similar results were observed in liver tissue and RAW 264.7 macrophages, where SS-b2 significantly elevated serine/threonine protein kinase 4 (STK4) expression and decreased the expression of interleukin-1 receptor–associated kinase 1 (IRAK1), nuclear factor-kappaB (NF-κB), and downstream inflammatory cytokines, thus exerting anti-cancer and anti-inflammatory effects. Moreover, we employed siRNA to silence the STK4 expression in HepG2 to investigate the anti-tumor effect of SS-b2 in vitro. The STK4 knockdown would upregulate IRAK1 and thus the activation of NF-κB activity revealed by the increase in the levels of proinflammatory cytokines, consequently impairing SS-b2-induced inhibition of liver cancer development. Consequently, SS-b2 effectively inhibited PLC by upregulating STK4 to suppress the IRAK1/NF-κB signaling axis and is a promising agent for treating this disease. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Graphical abstract

28 pages, 3119 KiB  
Review
Biomarkers in Systemic Sclerosis: An Overview
by Giuseppe Di Maggio, Paola Confalonieri, Francesco Salton, Liliana Trotta, Luca Ruggero, Metka Kodric, Pietro Geri, Michael Hughes, Mattia Bellan, Michele Gilio, Selene Lerda, Elisa Baratella, Marco Confalonieri, Lucrezia Mondini and Barbara Ruaro
Curr. Issues Mol. Biol. 2023, 45(10), 7775-7802; https://doi.org/10.3390/cimb45100490 - 25 Sep 2023
Cited by 13 | Viewed by 5789
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood [...] Read more.
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood perfusion. Several studies have reported more than 240 pathways and numerous dysregulation proteins, giving insight into how the field of biomarkers in SSc is still extremely complex and evolving. Antinuclear antibodies (ANA) are present in more than 90% of SSc patients, and anti-centromere and anti-topoisomerase I antibodies are considered classic biomarkers with precise clinical features. Recent studies have reported that trans-forming growth factor β (TGF-β) plays a central role in the fibrotic process. In addition, interferon regulatory factor 5 (IRF5), interleukin receptor-associated kinase-1 (IRAK-1), connective tissue growth factor (CTGF), transducer and activator of transcription signal 4 (STAT4), pyrin-containing domain 1 (NLRP1), as well as genetic factors, including DRB1 alleles, are implicated in SSc damage. Several interleukins (e.g., IL-1, IL-6, IL-10, IL-17, IL-22, and IL-35) and chemokines (e.g., CCL 2, 5, 23, and CXC 9, 10, 16) are elevated in SSc. While adiponectin and maresin 1 are reduced in patients with SSc, biomarkers are important in research but will be increasingly so in the diagnosis and therapeutic approach to SSc. This review aims to present and highlight the various biomarker molecules, pathways, and receptors involved in the pathology of SSc. Full article
Show Figures

Figure 1

19 pages, 3055 KiB  
Article
Mutations in the Vicinity of the IRAK3 Guanylate Cyclase Center Impact Its Subcellular Localization and Ability to Modulate Inflammatory Signaling in Immortalized Cell Lines
by Ilona Turek, Trang H. Nguyen, Charles Galea, Isaiah Abad, Lubna Freihat, David T. Manallack, Tony Velkov and Helen Irving
Int. J. Mol. Sci. 2023, 24(10), 8572; https://doi.org/10.3390/ijms24108572 - 10 May 2023
Cited by 8 | Viewed by 3071
Abstract
Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates the magnitude of cellular responses to ligands perceived by interleukin-1 receptors (IL-1Rs) and Toll-like receptors (TLRs), leading to decreases in pro-inflammatory cytokines and suppressed inflammation. The molecular mechanism of IRAK3’s action remains unknown. IRAK3 functions as a [...] Read more.
Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates the magnitude of cellular responses to ligands perceived by interleukin-1 receptors (IL-1Rs) and Toll-like receptors (TLRs), leading to decreases in pro-inflammatory cytokines and suppressed inflammation. The molecular mechanism of IRAK3’s action remains unknown. IRAK3 functions as a guanylate cyclase, and its cGMP product suppresses lipopolysaccharide (LPS)-induced nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activity. To understand the implications of this phenomenon, we expanded the structure–function analyses of IRAK3 through site-directed mutagenesis of amino acids known or predicted to impact different activities of IRAK3. We verified the capacity of the mutated IRAK3 variants to generate cGMP in vitro and revealed residues in and in the vicinity of its GC catalytic center that impact the LPS-induced NFκB activity in immortalized cell lines in the absence or presence of an exogenous membrane-permeable cGMP analog. Mutant IRAK3 variants with reduced cGMP generating capacity and differential regulation of NFκB activity influence subcellular localization of IRAK3 in HEK293T cells and fail to rescue IRAK3 function in IRAK3 knock-out THP-1 monocytes stimulated with LPS unless the cGMP analog is present. Together, our results shed new light on the mechanism by which IRAK3 and its enzymatic product control the downstream signaling, affecting inflammatory responses in immortalized cell lines. Full article
(This article belongs to the Special Issue New Molecular Mechanisms and Markers in Inflammatory Disorders)
Show Figures

Figure 1

15 pages, 5014 KiB  
Article
Design of Novel IRAK4 Inhibitors Using Molecular Docking, Dynamics Simulation and 3D-QSAR Studies
by Swapnil P. Bhujbal, Weijie He and Jung-Mi Hah
Molecules 2022, 27(19), 6307; https://doi.org/10.3390/molecules27196307 - 24 Sep 2022
Cited by 6 | Viewed by 3362
Abstract
Treatment of several autoimmune diseases and types of cancer has been an intense area of research over the past two decades. Many signaling pathways that regulate innate and/or adaptive immunity, as well as those that induce overexpression or mutation of protein kinases, have [...] Read more.
Treatment of several autoimmune diseases and types of cancer has been an intense area of research over the past two decades. Many signaling pathways that regulate innate and/or adaptive immunity, as well as those that induce overexpression or mutation of protein kinases, have been targeted for drug discovery. One of the serine/threonine kinases, Interleukin-1 Receptor Associated Kinase 4 (IRAK4) regulates signaling through various Toll-like receptors (TLRs) and interleukin-1 receptor (IL1R). It controls diverse cellular processes including inflammation, apoptosis, and cellular differentiation. MyD88 gain-of-function mutations or overexpression of IRAK4 has been implicated in various types of malignancies such as Waldenström macroglobulinemia, B cell lymphoma, colorectal cancer, pancreatic ductal adenocarcinoma, breast cancer, etc. Moreover, over activation of IRAK4 is also associated with several autoimmune diseases. The significant role of IRAK4 makes it an interesting target for the discovery and development of potent small molecule inhibitors. A few potent IRAK4 inhibitors such as PF-06650833, RA9 and BAY1834845 have recently entered phase I/II clinical trial studies. Nevertheless, there is still a need of selective inhibitors for the treatment of cancer and various autoimmune diseases. A great need for the same intrigued us to perform molecular modeling studies on 4,6-diaminonicotinamide derivatives as IRAK4 inhibitors. We performed molecular docking and dynamics simulation of 50 ns for one of the most active compounds of the dataset. We also carried out MM-PBSA binding free energy calculation to identify the active site residues, interactions of which are contributing to the total binding energy. The final 50 ns conformation of the most active compound was selected to perform dataset alignment in a 3D-QSAR study. Generated RF-CoMFA (q2 = 0.751, ONC = 4, r2 = 0.911) model revealed reasonable statistical results. Overall results of molecular dynamics simulation, MM-PBSA binding free energy calculation and RF-CoMFA model revealed important active site residues of IRAK4 and necessary structural properties of ligand to design more potent IRAK4 inhibitors. We designed few IRAK4 inhibitors based on these results, which possessed higher activity (predicted pIC50) than the most active compounds of the dataset selected for this study. Moreover, ADMET properties of these inhibitors revealed promising results and need to be validated using experimental studies. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Design II)
Show Figures

Graphical abstract

19 pages, 4267 KiB  
Article
Extracellular HSP90α Induces MyD88-IRAK Complex-Associated IKKα/β−NF-κB/IRF3 and JAK2/TYK2−STAT-3 Signaling in Macrophages for Tumor-Promoting M2-Polarization
by Chi-Shuan Fan, Chia-Chi Chen, Li-Li Chen, Kee Voon Chua, Hui-Chen Hung, John T. -A. Hsu and Tze-Sing Huang
Cells 2022, 11(2), 229; https://doi.org/10.3390/cells11020229 - 11 Jan 2022
Cited by 42 | Viewed by 4609
Abstract
M2-polarization and the tumoricidal to tumor-promoting transition are commonly observed with tumor-infiltrating macrophages after interplay with cancer cells or/and other stroma cells. Our previous study indicated that macrophage M2-polarization can be induced by extracellular HSP90α (eHSP90α) secreted from endothelial-to-mesenchymal transition-derived cancer-associated fibroblasts. To [...] Read more.
M2-polarization and the tumoricidal to tumor-promoting transition are commonly observed with tumor-infiltrating macrophages after interplay with cancer cells or/and other stroma cells. Our previous study indicated that macrophage M2-polarization can be induced by extracellular HSP90α (eHSP90α) secreted from endothelial-to-mesenchymal transition-derived cancer-associated fibroblasts. To extend the finding, we herein validated that eHSP90α-induced M2-polarized macrophages exhibited a tumor-promoting activity and the promoted tumor tissues had significant increases in microvascular density but decreases in CD4+ T-cell level. We further investigated the signaling pathways occurring in eHSP90α-stimulated macrophages. When macrophages were exposed to eHSP90α, CD91 and toll-like receptor 4 (TLR4) functioned as the receptor/co-receptor for eHSP90α binding to recruit interleukin (IL)-1 receptor-associated kinases (IRAKs) and myeloid differentiation factor 88 (MyD88), and next elicited a canonical CD91/MyD88–IRAK1/4–IκB kinase α/β (IKKα/β)–nuclear factor-κB (NF-κB)/interferon regulatory factor 3 (IRF3) signaling pathway. Despite TLR4-MyD88 complex-associated activations of IKKα/β, NF-κB and IRF3 being well-known as involved in macrophage M1-activation, our results demonstrated that the CD91-TLR4-MyD88 complex-associated IRAK1/4−IKKα/β−NF-κB/IRF3 pathway was not only directly involved in M2-associated CD163, CD204, and IL-10 gene expressions but also required for downregulation of M1 inflammatory cytokines. Additionally, Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) were recruited onto MyD88 to induce the phosphorylation and activation of the transcription factor signal transducer and activator of transcription-3 (STAT-3). The JAK2/TYK2−STAT-3 signaling is known to associate with tumor promotion. In this study, the MyD88−JAK2/TYK2−STAT-3 pathway was demonstrated to contribute to eHSP90α-induced macrophage M2-polarization by regulating the expressions of M1- and M2-related genes, proangiogenic protein vascular endothelial growth factor, and phagocytosis-interfering factor Sec22b. Full article
Show Figures

Figure 1

16 pages, 4530 KiB  
Article
Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia
by Conelius Ngwa, Abdullah Al Mamun, Yan Xu, Romana Sharmeen and Fudong Liu
Cells 2021, 10(2), 276; https://doi.org/10.3390/cells10020276 - 30 Jan 2021
Cited by 21 | Viewed by 5687
Abstract
Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regulating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates [...] Read more.
Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regulating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Methods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK4′s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus. Inhibition of IRAK4 phosphorylation quenched microglial pro-inflammatory response primarily, and increased neuronal viability and neurite lengths after ischemia. Conclusions: IRAK4 signaling is critical for microglial inflammatory responses and a potential therapeutic target for neuroinflammatory diseases including cerebral ischemia. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

18 pages, 2315 KiB  
Article
MiR-378a-3p Is Critical for Burkitt Lymphoma Cell Growth
by Fubiao Niu, Agnieszka Dzikiewicz-Krawczyk, Jasper Koerts, Debora de Jong, Laura Wijenberg, Margot Fernandez Hernandez, Izabella Slezak-Prochazka, Melanie Winkle, Wierd Kooistra, Tineke van der Sluis, Bea Rutgers, Miente Martijn Terpstra, Klaas Kok, Joost Kluiver and Anke van den Berg
Cancers 2020, 12(12), 3546; https://doi.org/10.3390/cancers12123546 - 27 Nov 2020
Cited by 18 | Viewed by 4143
Abstract
MicroRNAs (miRNAs) are small RNA molecules with important gene regulatory roles in normal and pathophysiological cellular processes. Burkitt lymphoma (BL) is an MYC-driven lymphoma of germinal center B (GC-B) cell origin. To gain further knowledge on the role of miRNAs in the pathogenesis [...] Read more.
MicroRNAs (miRNAs) are small RNA molecules with important gene regulatory roles in normal and pathophysiological cellular processes. Burkitt lymphoma (BL) is an MYC-driven lymphoma of germinal center B (GC-B) cell origin. To gain further knowledge on the role of miRNAs in the pathogenesis of BL, we performed small RNA sequencing in BL cell lines and normal GC-B cells. This revealed 26 miRNAs with significantly different expression levels. For five miRNAs, the differential expression pattern was confirmed in primary BL tissues compared to GC-B cells. MiR-378a-3p was upregulated in BL, and its inhibition reduced the growth of multiple BL cell lines. RNA immunoprecipitation of Argonaute 2 followed by microarray analysis (Ago2-RIP-Chip) upon inhibition and ectopic overexpression of miR-378a-3p revealed 63 and 20 putative miR-378a-3p targets, respectively. Effective targeting by miR-378a-3p was confirmed by luciferase reporter assays for MAX Network Transcriptional Repressor (MNT), Forkhead Box P1 (FOXP1), Interleukin 1 Receptor Associated Kinase 4 (IRAK4), and lncRNA Just Proximal To XIST (JPX), and by Western blot for IRAK4 and MNT. Overexpression of IRAK4 and MNT phenocopied the effect of miR-378a-3p inhibition. In summary, we identified miR-378a-3p as a miRNA with an oncogenic role in BL and identified IRAK4 and MNT as miR-378a-3p target genes that are involved in its growth regulatory role. Full article
(This article belongs to the Special Issue Role of miRNAs in Cancer—Analysis of Their Targetome)
Show Figures

Figure 1

15 pages, 2959 KiB  
Article
Design of a Novel and Selective IRAK4 Inhibitor Using Topological Water Network Analysis and Molecular Modeling Approaches
by Myeong Hwi Lee, Anand Balupuri, Ye-rim Jung, Sungwook Choi, Areum Lee, Young Sik Cho and Nam Sook Kang
Molecules 2018, 23(12), 3136; https://doi.org/10.3390/molecules23123136 - 29 Nov 2018
Cited by 10 | Viewed by 5604
Abstract
Protein kinases are deeply involved in immune-related diseases and various cancers. They are a potential target for structure-based drug discovery, since the general structure and characteristics of kinase domains are relatively well-known. However, the ATP binding sites in protein kinases, which serve as [...] Read more.
Protein kinases are deeply involved in immune-related diseases and various cancers. They are a potential target for structure-based drug discovery, since the general structure and characteristics of kinase domains are relatively well-known. However, the ATP binding sites in protein kinases, which serve as target sites, are highly conserved, and thus it is difficult to develop selective kinase inhibitors. To resolve this problem, we performed molecular dynamics simulations on 26 kinases in the aqueous solution, and analyzed topological water networks (TWNs) in their ATP binding sites. Repositioning of a known kinase inhibitor in the ATP binding sites of kinases that exhibited a TWN similar to interleukin-1 receptor-associated kinase 4 (IRAK4) allowed us to identify a hit molecule. Another hit molecule was obtained from a commercial chemical library using pharmacophore-based virtual screening and molecular docking approaches. Pharmacophoric features of the hit molecules were hybridized to design a novel compound that inhibited IRAK4 at low nanomolar levels in the in vitro assay. Full article
(This article belongs to the Special Issue Application of Computational Methods in Drug Design)
Show Figures

Graphical abstract

15 pages, 6074 KiB  
Review
Recent Progress in the Molecular Recognition and Therapeutic Importance of Interleukin-1 Receptor-Associated Kinase 4
by Mahesh Chandra Patra and Sangdun Choi
Molecules 2016, 21(11), 1529; https://doi.org/10.3390/molecules21111529 - 13 Nov 2016
Cited by 36 | Viewed by 12543
Abstract
Toll-like receptors (TLRs) are the most upstream pattern recognition receptors in the cell, which detect pathogen associated molecular patterns and initiate signal transduction, culminating in the transcription of pro-inflammatory cytokines and antiviral interferon. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key mediator in [...] Read more.
Toll-like receptors (TLRs) are the most upstream pattern recognition receptors in the cell, which detect pathogen associated molecular patterns and initiate signal transduction, culminating in the transcription of pro-inflammatory cytokines and antiviral interferon. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key mediator in TLR (except for TLR3) and interleukin-1 receptor signaling pathways. The loss of kinase function of IRAK4 is associated with increased susceptibility to various pathogens, while its over-activation causes autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and cancer. The therapeutic importance of this master kinase has been advocated by a number of recent preclinical studies, where potent inhibitors have been administered to improve various TLR-mediated pathologies. Increasing studies of X-ray crystallographic structures with bound inhibitors have improved our knowledge on the molecular recognition of ligands by IRAK4, which will be crucial for the development of new inhibitors with improved potencies. In this review, we briefly discuss the structural aspect of ligand recognition by IRAK4 and highlight its therapeutic importance in the context of TLR-associated unmet medical needs. Full article
Show Figures

Figure 1

Back to TopTop