Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (520)

Search Parameters:
Keywords = integrated retrofitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5160 KB  
Article
Design and Structural Safety Assessment of a Hinge-Based Hoistable Car Deck for Ro-Ro Vessels
by Hyun Soo Kim, Min Goo Cho, Byungmoon Kwak, Kiseok Choi, Jang-Ik Park, Ji Hoon Kim and Sungwook Kang
J. Mar. Sci. Eng. 2025, 13(9), 1662; https://doi.org/10.3390/jmse13091662 - 29 Aug 2025
Abstract
Ro-Ro (Roll-on/Roll-off) vessels require adaptable deck systems to efficiently accommodate vehicles of varying sizes. Conventional fixed or hydraulically lifted car decks often face challenges related to structural efficiency, maintainability, and limited flexibility. To address these issues, this study proposes a novel hoistable car [...] Read more.
Ro-Ro (Roll-on/Roll-off) vessels require adaptable deck systems to efficiently accommodate vehicles of varying sizes. Conventional fixed or hydraulically lifted car decks often face challenges related to structural efficiency, maintainability, and limited flexibility. To address these issues, this study proposes a novel hoistable car deck system that incorporates a hinge-based folding mechanism and modular connections. The design enhances maintainability, allows independent adjustment of deck panels without external lifting equipment, and improves adaptability to diverse ship layouts. In addition, the proposed concept was systematically evaluated to verify its structural integrity and serviceability under representative loading conditions, highlighting its compliance with classification society requirements. These results suggest that the hinge-based modular deck provides a promising solution for next-generation Ro-Ro vessels, offering both operational flexibility and improved efficiency while paving the way for practical applications in shipbuilding and retrofitting projects. Full article
(This article belongs to the Section Ocean Engineering)
32 pages, 8958 KB  
Review
An Overview of Natural Cooling and Ventilation in Vernacular Architectures
by Amineddin Salimi, Ayşegül Yurtyapan, Mahmoud Ouria, Zihni Turkan and Nuran K. Pilehvarian
Wind 2025, 5(3), 21; https://doi.org/10.3390/wind5030021 - 29 Aug 2025
Abstract
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind [...] Read more.
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind catchers. Originating in Mesopotamian, Egyptian, Caucasia, and Iranian architectural traditions, these structures have adapted over centuries to maximize air circulation, thermal regulation, and humidity control, ensuring comfortable indoor environments without reliance on mechanical ventilation. This study analyzes traditional wind catcher designs, highlighting their geometric configurations, airflow optimization, and integration with architectural elements such as courtyards and solar chimneys. Through a comparative assessment, this paper contrasts passive cooling systems with modern HVAC technologies, emphasizing their energy neutrality, low-carbon footprint, and long-term sustainability benefits. A SWOT analysis evaluates their strengths, limitations, opportunities for technological integration, and challenges posed by urbanization and regulatory constraints. This study adopts a comparative analytical method, integrating a literature-based approach with qualitative assessments and a SWOT analysis framework to evaluate passive cooling strategies against modern HVAC systems. Methodologically, the research combines historical review, typological classification, and sustainability-driven performance comparisons to derive actionable insights for climate-responsive design. The research is grounded in a comparative assessment of traditional and modern cooling strategies, supported by typological analysis and evaluative frameworks. Looking toward the future, the research explores hybrid adaptations incorporating solar energy, AI-driven airflow control, and retrofitting strategies for smart cities, reinforcing the enduring relevance of vernacular cooling techniques in contemporary architecture. By bridging historical knowledge with innovative solutions, this paper contributes to ongoing discussions on climate-responsive urban planning and sustainable architectural development. Full article
Show Figures

Figure 1

25 pages, 741 KB  
Article
Prioritising Critical Factors for Local Economic Development in Urban Regeneration Strategies
by Amaia Sopelana, Silvia Urra-Uriarte, Idoia Landa Oregi, Itsaso Gonzalez Ochoantesana, Merit Tatar and Andreea Nacu
Urban Sci. 2025, 9(9), 342; https://doi.org/10.3390/urbansci9090342 - 29 Aug 2025
Abstract
Local economic development (LED) strategies at the district level—such as sub-city or neighbourhood initiatives—play a crucial role in fostering sustainable and inclusive urban growth. This study explores the critical factors influencing LED and urban regeneration at the district scale, emphasising the integration of [...] Read more.
Local economic development (LED) strategies at the district level—such as sub-city or neighbourhood initiatives—play a crucial role in fostering sustainable and inclusive urban growth. This study explores the critical factors influencing LED and urban regeneration at the district scale, emphasising the integration of sustainability, digital technologies, inclusivity, energy efficiency, community engagement, and innovation into strategic planning. To prioritise these CFs, a tailored survey was distributed among a group of 13 city experts from European cities, involved in research projects focused on district-level quality-of-life enhancements through building retrofits, urban space interventions, energy community promotion, and technological deployment. By focusing on the district level, this research highlights the importance of tailoring strategies to local contexts and leveraging the unique characteristics of each neighbourhood. The findings reveal the need for local governments to enhance the capacity of administrative staff to engage citizens and direct external support for development projects. The normative recommendations derived from this study are specifically grounded in district-level research and practice, ensuring their applicability to sub-city areas. This paper concludes that a context-specific and collaborative approach is essential for achieving equitable and sustainable economic development at the district level. Full article
Show Figures

Figure 1

21 pages, 4987 KB  
Article
Transforming Vulnerable Urban Areas: An IMM-Driven Resilience Strategy for Heat and Flood Challenges in Rio de Janeiro’s Cidade Nova
by Massimo Tadi, Hadi Mohammad Zadeh and Hoda Esmaeilian Toussi
Urban Sci. 2025, 9(9), 339; https://doi.org/10.3390/urbansci9090339 - 28 Aug 2025
Abstract
This study applies the Integrated Modification Methodology (IMM) to assess how morphology-driven, nature-based solutions reduce urban heat island (UHI) effects and flooding in Rio de Janeiro’s Cidade Nova. Multi-scale GIS diagnostics identify green continuity and vertical permeability as critical weaknesses. Simulations (Ladybug/Dragonfly) and [...] Read more.
This study applies the Integrated Modification Methodology (IMM) to assess how morphology-driven, nature-based solutions reduce urban heat island (UHI) effects and flooding in Rio de Janeiro’s Cidade Nova. Multi-scale GIS diagnostics identify green continuity and vertical permeability as critical weaknesses. Simulations (Ladybug/Dragonfly) and hydrological modelling (rational method) quantify the intervention’s impact, including greening, material retrofits, and drainage upgrades. Results show a 38% increase in albedo, a 13% reduction in volumetric heat capacity, and a 30% drop in thermal conductivity. These changes reduce the peak UHI by 0.2 °C hourly, narrowing the urban–rural temperature gap to 3.5 °C (summer) and 4.3 °C (winter). Hydrologically, impervious cover decreases from 22% to 15%, permeable surfaces rise from 9% to 29%, and peak runoff volume drops by 27% (16,062 to 11,753 m3/h), mitigating flood risks. Green space expands from 7.8% to 21%, improving connectivity by 50% and improving park access. These findings demonstrate that IMM-guided interventions effectively enhance thermal and hydrological resilience in dense tropical cities, aligning with climate adaptation and the Sustainable Development Goals. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

22 pages, 2176 KB  
Article
BIPV Market Development: International Technological Innovation System Analysis
by Nuria Martín-Chivelet, Michiel van Noord, Francesca Tilli, Rebecca Jing Yang, Nilmini Weerasinghe, Elin Daun and Angelo Baggini
Buildings 2025, 15(17), 3011; https://doi.org/10.3390/buildings15173011 - 25 Aug 2025
Viewed by 424
Abstract
Building-integrated photovoltaics (BIPV) is expected to play a relevant role in decarbonising our cities, both in new buildings and retrofit projects, making them more sustainable, resilient and pleasant. However, BIPV remains a niche market. To understand the reasons and help boost its development, [...] Read more.
Building-integrated photovoltaics (BIPV) is expected to play a relevant role in decarbonising our cities, both in new buildings and retrofit projects, making them more sustainable, resilient and pleasant. However, BIPV remains a niche market. To understand the reasons and help boost its development, this paper provides insights into BIPV through a holistic and systematic analysis that considers BIPV’s dual nature as both photovoltaic and building product. The methodology is based on the analyses of several BIPV technological innovation systems (TISs) developed in six countries, as well as extensive comparative assessments and investigations to identify key global features of BIPV. Social aspects, market status and forecast, perspectives from the photovoltaic and building sectors, and related regulations and standardisation are key aspects analysed to develop recommendations for policymakers. Outcome examples are low to moderate acceptance of BIPV among building owners, who give cost reasons for choosing building-added photovoltaics (BAPV) over BIPV, as well as a need for information, official guidance, skilled personnel, improved cross-sector collaboration, availability of BIPV products, proper digital tools and specific regulation to improve BIPV’s legitimacy in the construction sector. Essential is developing policies that encourage the adoption of BIPV, including standardisation, promotion and financing. Full article
Show Figures

Figure 1

22 pages, 8482 KB  
Article
Effect of C-FRP (Carbon Fiber Reinforced Polymer) Rope and Sheet Strengthening on the Shear Behavior of RC Beam-Column Joints
by Emmanouil Golias and Chris Karayannis
Fibers 2025, 13(9), 113; https://doi.org/10.3390/fib13090113 - 22 Aug 2025
Viewed by 261
Abstract
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical [...] Read more.
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical ropes at column corners, provide enhanced core confinement and shear reinforcement. C-FRP sheets applied to the beam’s plastic hinge region further increase flexural strength and delay localized failure. Three full-scale, shear-deficient RC joints were subjected to cyclic lateral loading. The unstrengthened specimen (JB0V) exhibited rapid stiffness deterioration, premature joint shear cracking, and unstable hysteretic behavior. In contrast, the specimen strengthened solely with X-shaped C-FRP ropes (JB0VF2X2c) displayed a markedly slower rate of stiffness degradation, delayed crack development, and improved energy dissipation stability. The fully retrofitted specimen (JB0VF2X2c + C-FRP) demonstrated the most pronounced gains, with peak load capacity increased by 65%, equivalent viscous damping enhanced by 55%, and joint shear deformations reduced by more than 40%. Even at 4% drift, it retained over 90% of its peak strength, while localizing damage away from the joint core—a performance unattainable by the unstrengthened configuration. These results clearly establish that the combined C-FRP rope–sheet system transforms the seismic response of deficient RC joints, offering a lightweight, non-invasive, and rapidly deployable retrofit solution. By simultaneously boosting shear resistance, ductility, and energy dissipation while controlling damage localization, the technique provides a robust pathway to extend service life and significantly enhance post-earthquake functionality in critical structural connections. Full article
Show Figures

Figure 1

23 pages, 5883 KB  
Article
Microclimatic Effects of Retrofitting a Green Roof Beneath an East–West PV Array: A Two-Year Field Study in Austria
by Leonie Möslinger, Erich Streit, Azra Korjenic and Abdulah Sulejmanoski
Sustainability 2025, 17(16), 7495; https://doi.org/10.3390/su17167495 - 19 Aug 2025
Viewed by 369
Abstract
Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic [...] Read more.
Integrating photovoltaic (PV) systems with green roofs presents a synergistic approach to urban sustainability. Many existing flat-roof PV installations, often east–west oriented with limited elevation, present integration challenges for green roofs and are therefore understudied. This study addresses this by investigating the microclimatic effects of retrofitting an extensive green roof beneath such an existing PV array. Over a two-year period, continuous measurements of sub-panel air temperature, relative humidity, and module surface temperature were conducted. Results show that the green roof reduced average midday sub-panel air temperatures by 1.7–2.2 °C, with peak reductions up to 8 °C during summer, while nighttime temperatures were higher above the green roof. Relative humidity increased by up to 8.1 percentage points and module surface temperatures beneath the green roof were lowered by 0.4–1.5 °C, though with greater variability. Computational fluid dynamics simulations confirmed that evaporative cooling was spatially confined beneath the panels and highlighted the influence of structural features on airflow and convective cooling. Despite limited vegetation beneath the panels, the green roof retained moisture longer than the gravel roof, resulting in particularly strong cooling effects in the days following rainfall. The study highlights the retrofitting potential for improving rooftop climates, while showing key design recommendations for enhanced system performance. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

21 pages, 2712 KB  
Review
The State of the Art and Potentialities of UAV-Based 3D Measurement Solutions in the Monitoring and Fault Diagnosis of Quasi-Brittle Structures
by Mohammad Hajjar, Emanuele Zappa and Gabriella Bolzon
Sensors 2025, 25(16), 5134; https://doi.org/10.3390/s25165134 - 19 Aug 2025
Viewed by 546
Abstract
The structural health monitoring (SHM) of existing infrastructure and heritage buildings is essential for their preservation and safety. This is a review paper which focuses on modern three-dimensional (3D) measurement techniques, particularly those that enable the assessment of the structural response to environmental [...] Read more.
The structural health monitoring (SHM) of existing infrastructure and heritage buildings is essential for their preservation and safety. This is a review paper which focuses on modern three-dimensional (3D) measurement techniques, particularly those that enable the assessment of the structural response to environmental actions and operational conditions. The emphasis is on the detection of fractures and the identification of the crack geometry. While traditional monitoring systems—such as pendula, callipers, and strain gauges—have been widely used in massive, quasi-brittle structures like dams and masonry buildings, advancements in non-contact and computer-vision-based methods are increasingly offering flexible and efficient alternatives. The integration of drone-mounted systems facilitates access to challenging inspection zones, enabling the acquisition of quantitative data from full-field surface measurements. Among the reviewed techniques, digital image correlation (DIC) stands out for its superior displacement accuracy, while photogrammetry and time-of-flight (ToF) technologies offer greater operational flexibility but require additional processing to extract displacement data. The collected information contributes to the calibration of digital twins, supporting predictive simulations and real-time anomaly detection. Emerging tools based on machine learning and digital technologies further enhance damage detection capabilities and inform retrofitting strategies. Overall, vision-based methods show strong potential for outdoor SHM applications, though practical constraints such as drone payload and calibration requirements must be carefully managed. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 4101 KB  
Article
Investigation into the Impact of Enclosure Retrofit on Thermal Comfort in Semi-Open University Space
by Jian Ge, Jiahong Zhao, Ziyu Wu and Honghu Zhang
Buildings 2025, 15(16), 2883; https://doi.org/10.3390/buildings15162883 - 14 Aug 2025
Viewed by 207
Abstract
The retrofit of semi-open transitional spaces in university buildings is essential for enhancing both thermal comfort and energy efficiency. However, most studies have focused on conventional indoor environments, overlooking the unique thermal characteristics of semi-open spaces and their impact on occupant comfort. This [...] Read more.
The retrofit of semi-open transitional spaces in university buildings is essential for enhancing both thermal comfort and energy efficiency. However, most studies have focused on conventional indoor environments, overlooking the unique thermal characteristics of semi-open spaces and their impact on occupant comfort. This study integrated field measurements, occupant surveys, and AirPak simulations to develop a three-tier evaluation framework covering environmental parameters, subjective thermal perception, and simulation-based validation. Focusing on teaching buildings at Zhejiang University’s Zijingang Campus, the analysis revealed that the retrofit increased the daily mean air temperature by 2.1 °C and decreased the relative humidity by 3.6% in winter. The peak thermal comfort indices PET and PMV improved by 4.4 °C and 0.98, respectively, with a neutral PET identified at 13.3 °C. PMV showed a stronger correlation with TSV (p = 0.94, R2 = 0.81) than PET. Simulations further validated the retrofit’s effectiveness in stabilizing the indoor thermal environment and reducing airflow discomfort. These findings provide both theoretical insights and practical guidance for the climate-responsive, energy-efficient retrofitting of campus buildings in hot summer and cold winter (HSCW) zones. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

46 pages, 26730 KB  
Review
AI-Driven Multi-Objective Optimization and Decision-Making for Urban Building Energy Retrofit: Advances, Challenges, and Systematic Review
by Rudai Shan, Xiaohan Jia, Xuehua Su, Qianhui Xu, Hao Ning and Jiuhong Zhang
Appl. Sci. 2025, 15(16), 8944; https://doi.org/10.3390/app15168944 - 13 Aug 2025
Viewed by 538
Abstract
Urban building energy retrofit (UBER) is a critical strategy for advancing the low-carbon and climate-resilience transformation of cities. The integration of machine learning (ML), data-driven clustering, and multi-objective optimization (MOO) is a key aspect of artificial intelligence (AI) that is transforming the process [...] Read more.
Urban building energy retrofit (UBER) is a critical strategy for advancing the low-carbon and climate-resilience transformation of cities. The integration of machine learning (ML), data-driven clustering, and multi-objective optimization (MOO) is a key aspect of artificial intelligence (AI) that is transforming the process of retrofit decision-making. This integration enables the development of scalable, cost-effective, and robust solutions on an urban scale. This systematic review synthesizes recent advances in AI-driven MOO frameworks for UBER, focusing on how state-of-the-art methods can help to identify and prioritize retrofit targets, balance energy, cost, and environmental objectives, and develop transparent, stakeholder-oriented decision-making processes. Key advances highlighted in this review include the following: (1) the application of ML-based surrogate models for efficient evaluation of retrofit design alternatives; (2) data-driven clustering and classification to identify high-impact interventions across complex urban fabrics; (3) MOO algorithms that support trade-off analysis under real-world constraints; and (4) the emerging integration of explainable AI (XAI) for enhanced transparency and stakeholder engagement in retrofit planning. Representative case studies demonstrate the practical impact of these approaches in optimizing envelope upgrades, active system retrofits, and prioritization schemes. Notwithstanding these advancements, considerable challenges persist, encompassing data heterogeneity, the transferability of models across disparate urban contexts, fragmented digital toolchains, and the paucity of real-world validation of AI-based solutions. The subsequent discussion encompasses prospective research directions, with particular emphasis on the potential of deep learning (DL), spatiotemporal forecasting, generative models, and digital twins to further advance scalable and adaptive urban retrofit. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) for Energy Systems)
Show Figures

Figure 1

27 pages, 8810 KB  
Article
Natural Fiber TRM for Integrated Upgrading/Retrofitting
by Arnas Majumder, Monica Valdes, Andrea Frattolillo, Enzo Martinelli and Flavio Stochino
Buildings 2025, 15(16), 2852; https://doi.org/10.3390/buildings15162852 - 12 Aug 2025
Viewed by 352
Abstract
Sustainability in the construction and building sector with the use of greener and more eco-friendly building materials can minimize carbon footprint, which is one of the prime goals of the twenty-first century. The use of natural fibers in ancient and traditional buildings and [...] Read more.
Sustainability in the construction and building sector with the use of greener and more eco-friendly building materials can minimize carbon footprint, which is one of the prime goals of the twenty-first century. The use of natural fibers in ancient and traditional buildings and structures is not new, but in the last fifty years, only man-made fibers have predominantly occupied the market for structural retrofitting or upgrading. This research investigated the potential of utilizing natural fibers, particularly jute fiber products, to enhance masonry’s thermal and structural characteristics. The study meticulously investigated the utilization of materials such as jute net (with a mesh size of 2.5 cm × 1.25 cm), jute fiber diatons, and jute fiber composite mortar (with 1% jute fiber with respect to the dry mortar mass) in the context of masonry upgrading. The research evaluated the structural and thermal performance of these upgraded walls. Notably, the implementation of natural fiber textile-reinforced mortar (NFTRM) resulted in an astounding increase of over 500% in the load-bearing capacity of the walls, while simultaneously enhancing insulation by more than 36%. Furthermore, the study involved a meticulous analysis of crack patterns during in-plane cyclic testing utilizing the advanced Digital Image Correlation (DIC) tool. The upgraded/retrofitted wall exhibited a maximum crack width of approximately 7.84 mm, primarily along the diagonal region. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

31 pages, 13384 KB  
Article
Physics-Informed and Explainable Graph Neural Networks for Generalizable Urban Building Energy Modeling
by Rudai Shan, Hao Ning, Qianhui Xu, Xuehua Su, Mengjin Guo and Xiaohan Jia
Appl. Sci. 2025, 15(16), 8854; https://doi.org/10.3390/app15168854 - 11 Aug 2025
Viewed by 597
Abstract
Urban building energy prediction is a critical challenge for sustainable city planning and large-scale retrofit prioritization. However, traditional data-driven models struggle to capture real urban environments’ spatial and morphological complexity. In this study, we systematically benchmark a range of graph-based neural networks (GNNs)—including [...] Read more.
Urban building energy prediction is a critical challenge for sustainable city planning and large-scale retrofit prioritization. However, traditional data-driven models struggle to capture real urban environments’ spatial and morphological complexity. In this study, we systematically benchmark a range of graph-based neural networks (GNNs)—including graph convolutional network (GCN), GraphSAGE, and several physics-informed graph attention network (GAT) variants—against conventional artificial neural network (ANN) baselines, using both shape coefficient and energy use intensity (EUI) stratification across three distinct residential districts. Extensive ablation and cross-district generalization experiments reveal that models explicitly incorporating interpretable physical edge features, such as inter-building distance and angular relation, achieve significantly improved prediction accuracy and robustness over standard approaches. Among all models, GraphSAGE demonstrates the best overall performance and generalization capability. At the same time, the effectiveness of specific GAT edge features is found to be district-dependent, reflecting variations in local morphology and spatial logic. Furthermore, explainability analysis shows that the integration of domain-relevant spatial features enhances model interpretability and provides actionable insight for urban retrofit and policy intervention. The results highlight the value of physics-informed GNNs (PINN) as a scalable, transferable, and transparent tool for urban energy modeling, supporting evidence-based decision making in the context of aging residential building upgrades and sustainable urban transformation. Full article
(This article belongs to the Special Issue AI-Assisted Building Design and Environment Control)
Show Figures

Figure 1

14 pages, 1110 KB  
Article
Modular System for High-Precision Irrigation with Nutrients Addition
by Elena Serea, Codrin Donciu and Marinel Costel Temneanu
Appl. Sci. 2025, 15(16), 8819; https://doi.org/10.3390/app15168819 - 10 Aug 2025
Viewed by 451
Abstract
Precision agriculture necessitates irrigation systems capable of adapting to spatial variability and dynamic crop requirements. Existing systems often rely on costly infrastructures or lack the fine-grained control and integration of fertigation. This paper presents the development and experimental validation of a cost-effective, modular [...] Read more.
Precision agriculture necessitates irrigation systems capable of adapting to spatial variability and dynamic crop requirements. Existing systems often rely on costly infrastructures or lack the fine-grained control and integration of fertigation. This paper presents the development and experimental validation of a cost-effective, modular Irrigation Modular System (IMS) designed for deployment on pivot or linear movement automated irrigation infrastructure. The system enables high-precision irrigation with nutrient addition, supported by real-time environmental sensing and Power Line Communication (PLC) for data transfer. The IMS comprises five main components: electrovalve-controlled irrigation modules, soil and atmospheric sensor nodes, nutrient supply units, a PLC-based communication layer, and a centralized decision-making platform. Field trials on early tomatoes and autumn cauliflower demonstrated improved water and nutrient use efficiency, reduced input consumption, and increased yields. The IMS presents a scalable, retrofit-ready solution for efficient resource management in precision agriculture. Full article
Show Figures

Figure 1

22 pages, 2381 KB  
Article
Residents’ Values: Co-Designing Social Housing Retrofit
by Saskia Furman, Karim Hadjri, Anna Martínez Duran and Xavier Martín Tost
Architecture 2025, 5(3), 58; https://doi.org/10.3390/architecture5030058 - 9 Aug 2025
Viewed by 299
Abstract
Residents’ values in social housing retrofit extend beyond energy efficiency targets to encompass complex social and physical considerations, shaping their acceptance and experience of interventions. These values appear to influence retrofit success yet are often overlooked in policy and practice that prioritise technical [...] Read more.
Residents’ values in social housing retrofit extend beyond energy efficiency targets to encompass complex social and physical considerations, shaping their acceptance and experience of interventions. These values appear to influence retrofit success yet are often overlooked in policy and practice that prioritise technical performance. This paper investigates what residents value in social housing retrofit through a focus group method with the Sutton Estate in London, combining institutional stakeholder (housing association and architect) and resident perspectives. Content analysis of focus group questionnaires, discussions, and consensus-building activities revealed four key resident values: (1) good stakeholder relationships, emphasising trust-building through personal connections; (2) access to information, requiring clear, continuous communication through multiple channels; (3) comfort, health, and safety, integrating physical and mental wellbeing; and (4) building and community longevity, focusing on preserving building character and social sustainability. The findings suggest that social housing retrofit may benefit from a holistic approach integrating residents’ values throughout the project lifecycle, addressing the social, physical, and long-term sustainability of homes and communities. The findings highlight the importance for housing associations, architects, and policymakers to consider residents’ values when developing retrofit strategies, balancing technical requirements with residents’ needs and priorities. Full article
Show Figures

Figure 1

23 pages, 725 KB  
Article
Enabling Technologies of Industry 4.0 for the Modernization of an Industrial Process
by Rafael S. Mendonca, Renan L. P. Medeiros, Luiz Eduardo Sales e Silva, Renato G. G. Silva, Luis G. S. Santos and Vicente Ferreira de Lucena
Processes 2025, 13(8), 2488; https://doi.org/10.3390/pr13082488 - 7 Aug 2025
Viewed by 452
Abstract
The retrofitting of legacy systems enables upgrades that extend the lifespan of outdated equipment, improve efficiency, and reduce environmental impacts. This manuscript builds on existing approaches to retrofitting legacy systems using Industry 4.0 technologies. Therefore, it explores how the proposed modernization envisions the [...] Read more.
The retrofitting of legacy systems enables upgrades that extend the lifespan of outdated equipment, improve efficiency, and reduce environmental impacts. This manuscript builds on existing approaches to retrofitting legacy systems using Industry 4.0 technologies. Therefore, it explores how the proposed modernization envisions the transition from Industry 4.0 to Industry 5.0, which emphasizes human-centric approaches, sustainability, and resilience. Tools such as RAMI 4.0 (a reference architecture model for Industry 4.0), Lean Six Sigma (a methodology for process improvement), and Big Data analytics are highlighted throughout the text as essential for optimizing processes and ensuring alignment with global challenges, including resource efficiency and environmental sustainability. This work addresses both conceptual and technical aspects of system modernization. It provides a comprehensive framework for retrofitting systems and integrating advanced technologies such as digital twins. These efforts ensure that industries are prepared for the evolving demands of Industry 4.0 and beyond. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

Back to TopTop