Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = integral test facility experiment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2056 KiB  
Systematic Review
Effectiveness of Nature-Based Interventions in Reducing Agitation Among Older Adults with Dementia: A Systematic Review and Meta-Analysis
by Eun Yeong Choe, Jennifer Yoohyun Lee and Jed Montayre
Healthcare 2025, 13(14), 1727; https://doi.org/10.3390/healthcare13141727 - 17 Jul 2025
Viewed by 264
Abstract
Background/Objectives: The role of environmental modifications and design in mitigating behavioural symptoms is increasingly being recognised as a way to address the psychosocial needs of individuals with dementia. This study aims to investigate various nature-based interventions for reducing agitation in people with [...] Read more.
Background/Objectives: The role of environmental modifications and design in mitigating behavioural symptoms is increasingly being recognised as a way to address the psychosocial needs of individuals with dementia. This study aims to investigate various nature-based interventions for reducing agitation in people with dementia in long-term residential care environments. Methods: Database searches were conducted on MEDLINE, PsycINFO, Scopus, and Web of Science. A literature search was conducted with the following inclusion criteria: (i) peer-reviewed journal publication written in English; (ii) random controlled trials (RCTs) and quasi-experimental design with results for pre- and post-testing reported; (iii) interventions using natural elements, where the effectiveness of the reduction in agitation was measured using a validated instrument; and (iv) participants aged 65 and older with dementia residing in long-term care facilities. Results: This meta-analysis included 29 studies with 733 participants. The results showed that such interventions had a significant negative mean effect on lowering agitation in this population. Additionally, intervention settings (indoor vs. outdoor) and the presence of social interaction were significant predictors of the effect size for agitation reduction. At the same time, no significant differences in effect size were observed between the types of experiences with nature (indirect vs. direct) or the duration of the interventions. Conclusions: This study demonstrates that, when thoughtfully applied, nature-based interventions can significantly alleviate agitation in patients with dementia residing in long-term residential care facilities. This review lays the groundwork for future research aimed at developing design guidelines and planning strategies to integrate natural elements into dementia-friendly environments effectively. Full article
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 295
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

13 pages, 4454 KiB  
Article
Proton Irradiation and Thermal Restoration of SiPMs for LEO Missions
by Alexis Luszczak, Lucas Finazzi, Leandro Gagliardi, Milagros Moreno, Maria L. Ibarra, Federico Golmar and Gabriel A. Sanca
Instruments 2025, 9(3), 15; https://doi.org/10.3390/instruments9030015 - 26 Jun 2025
Viewed by 244
Abstract
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from [...] Read more.
Silicon Photomultipliers (SiPMs) are optical sensors widely used in space applications due to their high photon detection efficiency, low power consumption, and robustness. However, in Low Earth Orbit (LEO), their performance degrades over time due to prolonged exposure to ionizing radiation, primarily from trapped protons and electrons. The dominant radiation-induced effect in SiPMs is an increase in dark current, which can compromise detector sensitivity. This study investigates the potential of thermal annealing as a mitigation strategy for radiation damage in SiPMs. We designed and tested PCB-integrated heaters to selectively heat irradiated SiPMs and induce recovery processes. A PID-controlled system was developed to stabilize the temperature at 100 °C, and a remotely controlled experimental setup was implemented to operate under irradiation conditions. Two SiPMs were simultaneously irradiated with 9 MeV protons at the EDRA facility, reaching a 1 MeV neutron equivalent cumulative fluence of (9.5 ± 0.2) × 108 cm−2. One sensor underwent thermal annealing between irradiation cycles, while the other served as a control. Throughout the experiment, dark current was continuously monitored using a source measure unit, and I–V curves were recorded before and after irradiation. A recovery of more than 39% was achieved after only 5 min of thermal cycling at 100 °C, supporting this recovery approach as a low-complexity strategy to mitigate radiation-induced damage in space-based SiPM applications and increase device lifetime in harsh environments. Full article
Show Figures

Graphical abstract

26 pages, 2363 KiB  
Article
Generative Artificial Intelligence-Enabled Facility Layout Design Paradigm
by Fuwen Hu, Chun Wang and Xuefei Wu
Appl. Sci. 2025, 15(10), 5697; https://doi.org/10.3390/app15105697 - 20 May 2025
Viewed by 1854
Abstract
Facility layout design (FLD) is critical for optimizing manufacturing efficiency, yet traditional approaches struggle with complexity, dynamic constraints, and fragmented data integration. This study proposes a generative-AI-enabled facility layout design, a novel paradigm aligning with Industry 4.0, to address these challenges by integrating [...] Read more.
Facility layout design (FLD) is critical for optimizing manufacturing efficiency, yet traditional approaches struggle with complexity, dynamic constraints, and fragmented data integration. This study proposes a generative-AI-enabled facility layout design, a novel paradigm aligning with Industry 4.0, to address these challenges by integrating generative artificial intelligence (AI), semantic models, and data-driven optimization. The proposed method evolves from three historical paradigms: experience-based methods, operations research, and simulation-based engineering. The metamodels supporting the generative-AI-enabled facility layout design is the Asset Administration Shell (AAS), which digitizes physical assets and their relationships, enabling interoperability across systems. Domain-specific knowledge graphs, constructed by parsing AAS metadata and enriched by large language models (LLMs), capture multifaceted relationships (e.g., spatial adjacency, process dependencies, safety constraints) to guide layout generation. The convolutional knowledge graph embedding (ConvE) method is employed for link prediction, converting entities and relationships into low-dimensional vectors to infer optimal spatial arrangements while addressing data sparsity through negative sampling. The proposed reference architecture for generative-AI-enabled facility layout design supports end-to-end layout design, featuring a 3D visualization engine, AI-driven optimization, and real-time digital twins. Prototype testing demonstrates the system’s end-to-end generation ability from requirement-driven contextual prompts and extensively reduced complexity of modeling, integration, and optimization. Key innovations include the fusion of AAS with LLM-derived contextual knowledge, dynamic adaptation via big data streams, and a hybrid optimization approach balancing competing objectives. The 3D layout generation results demonstrate a scalable, adaptive solution for storage workshops, bridging gaps between isolated data models and human–AI collaboration. This research establishes a foundational framework for AI-driven facility planning, offering actionable insights for AI-enabled facility layout design adoption and highlighting future directions in the generative design of complex engineering. Full article
Show Figures

Figure 1

35 pages, 15247 KiB  
Article
A Multi-Objective Approach for Optimizing Aisle Widths in Underground Parking
by Igor Kabashkin, Alua Kulmurzina, Assel Zhandarbekova, Zura Sansyzbayeva and Timur Sultanov
Infrastructures 2025, 10(4), 100; https://doi.org/10.3390/infrastructures10040100 - 21 Apr 2025
Viewed by 716
Abstract
This study presents a multi-objective optimization approach for determining optimal aisle widths in underground parking facilities, balancing vehicle maneuverability against parking capacity. The research methodology integrates geometric modeling, computational simulations, and empirical validation to establish evidence-based recommendations for aisle width design. Through systematic [...] Read more.
This study presents a multi-objective optimization approach for determining optimal aisle widths in underground parking facilities, balancing vehicle maneuverability against parking capacity. The research methodology integrates geometric modeling, computational simulations, and empirical validation to establish evidence-based recommendations for aisle width design. Through systematic testing of aisle widths ranging from 4.5 to 6.0 m across various vehicle types, the study identifies 5.0–5.5 m as the optimal range that maximizes both objectives for modern vehicle fleets. Geometric modeling establishes theoretical minimum widths based on vehicle turning radii, while software simulations quantify maneuverability metrics including parking success rates, time requirements, and collision probabilities. Physical testing in operational underground parking facilities validates these findings through controlled experiments with drivers of varying experience levels. The research demonstrates that aisle widths below 5.0 m significantly compromise maneuverability, particularly for larger vehicles, while widths exceeding 5.5 m provide negligible additional benefits while reducing capacity. A case study application in Kazakhstan, examining regional vehicle distributions and regulatory frameworks, confirms the model’s practical utility. The findings suggest that current parking standards in some regions may require revision to accommodate changing vehicle dimensions. This optimization framework provides urban planners, architects and engineers with a data-driven methodology for designing underground parking facilities that enhance both user experience and space utilization efficiency. Full article
Show Figures

Figure 1

35 pages, 15716 KiB  
Article
Experimental Study of the Hydrodynamic Forces of Pontoon Raft Aquaculture Facilities Around a Wind Farm Monopile Under Wave Conditions
by Deming Chen, Mingchen Lin, Jinxin Zhou, Yanli Tang, Fenfang Zhao, Xinxin Wang, Mengjie Yu, Qiao Li and Daisuke Kitazawa
J. Mar. Sci. Eng. 2025, 13(4), 809; https://doi.org/10.3390/jmse13040809 - 18 Apr 2025
Viewed by 489
Abstract
The integrated development of offshore wind power and marine aquaculture represents a promising approach to the sustainable utilization of ocean resources. The present study investigated the hydrodynamic response of an innovative combination of a wind farm monopile and pontoon raft aquaculture facilities (PRAFs). [...] Read more.
The integrated development of offshore wind power and marine aquaculture represents a promising approach to the sustainable utilization of ocean resources. The present study investigated the hydrodynamic response of an innovative combination of a wind farm monopile and pontoon raft aquaculture facilities (PRAFs). Physical water tank experiments were conducted on PRAFs deployed around a wind farm monopile using the following configurations: single- and three-row arrangements of PRAFs with and without a monopile. The interaction between the aquaculture structure and the wind farm monopile was examined, with a particular focus on the mooring line tensions and bridle line tensions under different wave conditions. Utilizing the wind farm monopile foundation as an anchor, the mooring line tension was reduced significantly by 16–66% in the single-row PRAF. The multi-row PRAF arrangement experienced lower mooring line tension in comparison with the single-row PRAF arrangement, with the highest reduction of 73%. However, for the bridle line tension, the upstream component was enhanced, while the downstream one was weakened with a monopile, and they both decreased in the multi-row arrangement. Finally, we developed numerical models based on flume tank tests that examined the interactions between the monopile and PRAFs, including configurations of a single monopile, along with single- and three-row arrangements of PRAFs. The numerical simulation results confirmed that the monopile had a dampening effect on the wave propagation of 5% to 20%, and the impact of the pontoons on the monopile was negligible, implying that the integration of aquaculture facilities around wind farm infrastructure may not significantly alter the hydrodynamic loads experienced by the monopile. Full article
Show Figures

Figure 1

26 pages, 13220 KiB  
Article
YOLOv8-Based XR Smart Glasses Mobility Assistive System for Aiding Outdoor Walking of Visually Impaired Individuals in South Korea
by Incheol Jeong, Kapyol Kim, Jungil Jung and Jinsoo Cho
Electronics 2025, 14(3), 425; https://doi.org/10.3390/electronics14030425 - 22 Jan 2025
Cited by 1 | Viewed by 3078
Abstract
This study proposes an eXtended Reality (XR) glasses-based walking assistance system to support independent and safe outdoor walking for visually impaired people. The system leverages the YOLOv8n deep learning model to recognize walkable areas, public transport facilities, and obstacles in real time and [...] Read more.
This study proposes an eXtended Reality (XR) glasses-based walking assistance system to support independent and safe outdoor walking for visually impaired people. The system leverages the YOLOv8n deep learning model to recognize walkable areas, public transport facilities, and obstacles in real time and provide appropriate guidance to the user. The core components of the system are Xreal Light Smart Glasses and an Android-based smartphone, which are operated through a mobile application developed using the Unity game engine. The system divides the user’s field of vision into nine zones, assesses the level of danger in each zone, and guides the user along a safe walking path. The YOLOv8n model was trained to recognize sidewalks, pedestrian crossings, bus stops, subway exits, and various obstacles on a smartphone connected to XR glasses and demonstrated an average processing time of 583 ms and an average memory usage of 80 MB, making it suitable for real-time use. The experiments were conducted on a 3.3 km route around Bokjeong Station in South Korea and confirmed that the system works effectively in a variety of walking environments, but recognized the need to improve performance in low-light environments and further testing with visually impaired people. By proposing an innovative walking assistance system that combines XR technology and artificial intelligence, this study is expected to contribute to improving the independent mobility of visually impaired people. Future research will further validate the effectiveness of the system by integrating it with real-time public transport information and conducting extensive experiments with users with varying degrees of visual impairment. Full article
Show Figures

Figure 1

25 pages, 2528 KiB  
Article
Dynamic Control of Sodium Cold Trap Purification Temperature Using LSTM System Identification
by Rita Appiah, Alexander Heifetz, Derek Kultgen, Lefteri H. Tsoukalas and Richard B. Vilim
Energies 2024, 17(24), 6257; https://doi.org/10.3390/en17246257 - 11 Dec 2024
Viewed by 1120
Abstract
This study investigates the dynamic regulation of the sodium cold trap purification temperature at Argonne National Laboratory’s liquid sodium test facility, employing long short-term memory (LSTM) system identification techniques. The investigation introduces an innovative hybrid approach by integrating model predictive control (MPC) based [...] Read more.
This study investigates the dynamic regulation of the sodium cold trap purification temperature at Argonne National Laboratory’s liquid sodium test facility, employing long short-term memory (LSTM) system identification techniques. The investigation introduces an innovative hybrid approach by integrating model predictive control (MPC) based on first principles dynamic models with a multi-step time–frequency LSTM model in predicting the temperature profiles of a sodium cold trap purification system. The long short-term memory–model predictive controller (LSTM-MPC) model employs a sliding window scheme to gather training samples for multi-step prediction, leveraging historical data to construct predictive models that capture the non-linearities of the complex system dynamics without explicitly modeling the underlying physical processes. The performance of the LSTM-MPC and MPC were evaluated through simulation experiments, where both models were assessed on their capacity to maintain the cold trap temperature within predefined set-points while minimizing deviations and overshoots. Results obtained show how the data-driven LSTM-MPC model demonstrates stability and adaptability. In contrast, the traditional MPC model exhibits irregularities, particularly evident as overshoots around set-point limits, which can potentially compromise its effectiveness over long prediction time intervals. The findings obtained offer valuable insights into integrating data-driven techniques for enhancing real-time monitoring systems. Full article
(This article belongs to the Special Issue Development and Application of Innovative Nuclear Energy Systems)
Show Figures

Figure 1

11 pages, 2637 KiB  
Article
A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems
by Gabriele Manduchi, Andrea Rigoni, Luca Trevisan and Tommaso Patton
Sensors 2024, 24(18), 6155; https://doi.org/10.3390/s24186155 - 23 Sep 2024
Cited by 1 | Viewed by 1372
Abstract
Proper timing synchronization is important when data from sensors are acquired by different devices. This paper proposes a simple but effective solution for System on Chip (SoC) architectures that integrates a general-purpose Field Programmable Gate Array (FPGA) with a CPU. The proposed approach [...] Read more.
Proper timing synchronization is important when data from sensors are acquired by different devices. This paper proposes a simple but effective solution for System on Chip (SoC) architectures that integrates a general-purpose Field Programmable Gate Array (FPGA) with a CPU. The proposed approach relies on a network synchronization protocol implemented in software, such as Network Time Protocol (NTP) or Precision Time Protocol (PTP), and uses the FPGA to generate a clock reference that is maintained in step with the synchronized system clock. The clock generated by the FPGA is obtained from the FPGA oscillator via appropriate fractional clock division. Clock drift is avoided via a software program that periodically compares the FPGA and the system counters, respectively, and adjusts the fractional clock divider in order to slightly adjust the FPGA clock frequency using a Proportional Integral controller. A specific implementation is presented on the RedPitaya platform, generating a 1 MHz clock in step with the NTP synchronized system clock. The presented system has been used in a distributed data acquisition system for fast transient recording in the neutral beam test facility for the ITER nuclear fusion experiment. Full article
(This article belongs to the Special Issue Sensors Based SoCs, FPGA in IoT Applications)
Show Figures

Figure 1

11 pages, 259 KiB  
Article
Nurses’ Knowledge and Attitudes about Adult Post-Operative Pain Assessment and Management: Cross Sectional Study in Qatar
by Haya Samara, Lily O’Hara and Kalpana Singh
Nurs. Rep. 2024, 14(3), 2061-2071; https://doi.org/10.3390/nursrep14030153 - 21 Aug 2024
Cited by 1 | Viewed by 3423
Abstract
Background: Pain is a complex and challenging phenomenon. People have different pain experiences, but everyone has the right to effective pain management. Pain assessment and management are integral components of a nurse’s role. Aim: To assess the knowledge and attitudes of nurses in [...] Read more.
Background: Pain is a complex and challenging phenomenon. People have different pain experiences, but everyone has the right to effective pain management. Pain assessment and management are integral components of a nurse’s role. Aim: To assess the knowledge and attitudes of nurses in Qatar about adult post-operative patients’ pain assessment and management, and the factors that may be associated with such knowledge and attitudes. Methods: Post-operative registered nurses from all peri-operative areas at Hamad Medical Corporation participated in a cross-sectional online survey using a self-administered questionnaire. A knowledge and attitudes (K&A) score was calculated. Associations between K&A and potential explanatory variables were assessed using t-tests and one-way ANOVA. Results: A total of 151 post-operative nurses participated in the study. The mean knowledge and attitudes (K&A) score was 19.6 ± 4.5 out of 41 (48%), indicating a large deficit in nurses’ knowledge and attitudes about adult post-operative pain. There were no statistically significant differences in the mean K&A scores of participants based on gender, nationality, education level, marital status, workplace facility, current job designation, or hours of pain education. Conclusions: There is a significant deficit in post-operative nurses’ knowledge and attitudes about pain across the nursing workforce in post-operative care. Implications for nursing education and policy: Evidence-based, innovative nursing education courses are needed to improve nurses’ knowledge and attitudes about pain assessment and management. Health service policy is required to ensure that evidence-based in-service education on pain management is compulsory for all nurses. This study was not registered. Full article
(This article belongs to the Special Issue Nursing Care and Clinical Management in the Post-Pandemic Era)
14 pages, 4003 KiB  
Article
Experimental and Numerical Investigation on the Motion Responses of a Spar-Type Floating Structure with Aquaculture Feeding Systems
by Qiao Li, Shenyi Bai, Shuchuang Dong, Jinxin Zhou and Daisuke Kitazawa
J. Mar. Sci. Eng. 2024, 12(8), 1329; https://doi.org/10.3390/jmse12081329 - 6 Aug 2024
Cited by 2 | Viewed by 1496
Abstract
The combination of aquaculture industry with floating offshore wind turbines has the potential to generate significant economic advantages for both industries. To investigate this potential, the present study focuses on analyzing the heave, and pitch dynamic responses of a Spar-type floating offshore wind [...] Read more.
The combination of aquaculture industry with floating offshore wind turbines has the potential to generate significant economic advantages for both industries. To investigate this potential, the present study focuses on analyzing the heave, and pitch dynamic responses of a Spar-type floating offshore wind turbine that incorporates an aquaculture feeding system. A series of water tank model tests, together with numerical calculations, were conducted using a 1/56 scale model of a 2 MW, displacement 3500 tons, floating Spar-type wind turbine. The feeding system was placed inside the Spar and slightly above the waterline by adjusting the configuration of the total weight. The weight of the feeding system in the experiments is 100 tons, capable of sustaining 300 tons of fish for an entire week, and the realistic applications have been expanded using the numerical calculation. For this reason, the present study serves a good case study for general understanding, because the integration of the feeding system inevitably raises the center of gravity of the structure and potentially affects its overall stability. The experiments revealed no discernible increase in the heave motion. Moreover, the pitch motion theoretically increased, but occasionally decreased in the experiments with the overall inclination angles being less than 1.2 degrees during the experiments. As a result, the present study supports the practice of integrating a Spar-type wind turbine with feeding systems. Future research should continue to comprehensively examine, both experimentally and numerically, the motion responses of the wind turbine and aquaculture facilities with varying configurations. Full article
Show Figures

Figure 1

14 pages, 30446 KiB  
Article
Investigation of Electropolishing for High-Gradient 1.3 GHz and 3.9 GHz Niobium Cavities
by Yue Zong, Jinfang Chen, Dong Wang, Runzhi Xia, Jiani Wu, Zheng Wang, Shuai Xing, Xiaowei Wu, Xuhao He and Xiaohu Wang
Materials 2024, 17(13), 3207; https://doi.org/10.3390/ma17133207 - 1 Jul 2024
Viewed by 1478
Abstract
Electropolishing (EP) has become a standard procedure for treating the inner surfaces of superconducting radio-frequency (SRF) cavities composed of pure niobium. In this study, a new EP facility was employed for the surface treatment of both 1.3 GHz and 3.9 GHz single-cell cavities [...] Read more.
Electropolishing (EP) has become a standard procedure for treating the inner surfaces of superconducting radio-frequency (SRF) cavities composed of pure niobium. In this study, a new EP facility was employed for the surface treatment of both 1.3 GHz and 3.9 GHz single-cell cavities at the Wuxi Platform. The stable “cold EP” mode was successfully implemented on this newly designed EP facility. By integrating the cold EP process with a two-step baking approach, a maximum accelerating gradient exceeding 40 MV/m was achieved in 1.3 GHz single-cell cavities. Additionally, an update to this EP facility involved the design of a special cathode system for small-aperture structures, facilitating the cold EP process for 3.9 GHz single-cell cavities. Ultimately, a maximum accelerating gradient exceeding 25 MV/m was attained in the 3.9 GHz single-cell cavities after undergoing the cold EP treatment. The design and commissioning of the EP device, as well as the electropolishing and vertical test results of the single-cell cavities, will be detailed herein. These methods and experiences are also transferable to multi-cell cavities and elliptical cavities of other frequencies. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

17 pages, 2907 KiB  
Article
Implementing Digital Multispectral 3D Scanning Technology for Rapid Assessment of Hemp (Cannabis sativa L.) Weed Competitive Traits
by Gursewak Singh, Tyler Slonecki, Philip Wadl, Michael Flessner, Lynn Sosnoskie, Harlene Hatterman-Valenti, Karla Gage and Matthew Cutulle
Remote Sens. 2024, 16(13), 2375; https://doi.org/10.3390/rs16132375 - 28 Jun 2024
Cited by 4 | Viewed by 2366
Abstract
The economic significance of hemp (Cannabis sativa L.) as a source of grain, fiber, and flower is rising steadily. However, due to the lack of registered herbicides effective in hemp cultivation, growers have limited weed management options. Plant height, biomass, and canopy [...] Read more.
The economic significance of hemp (Cannabis sativa L.) as a source of grain, fiber, and flower is rising steadily. However, due to the lack of registered herbicides effective in hemp cultivation, growers have limited weed management options. Plant height, biomass, and canopy architecture may affect crop–weed competition. Greenhouse experiments conducted at the joint Clemson University Coastal Research and Education Center and USDA-ARS research facility at Charleston, SC, USA used 27 hemp varieties, grown under controlled temperature and light conditions. Weekly plant scans using a digital multispectral phenotyping system, integrated with machine learning algorithms of the PlantEye F500 instrument, (Phenospex, Heerlen, Netherlands) captured high-resolution 3D models and spectral data of the plants. Manual and scanner-based measurements were validated and analyzed using statistical methods to assess plant growth and morphology. This study included validation tests showing a significant correlation (p < 0.001) between digital and manual measurements (R2 = 0.89 for biomass, R2 = 0.94 for height), indicating high precision. The use of 3D multispectral scanning significantly reduces the time-intensive nature of manual measurements, allowing for a more efficient assessment of morphological traits. These findings suggest that digital phenotyping can enhance integrated weed management strategies and improve hemp crop productivity by facilitating the selection of competitive hemp varieties. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

17 pages, 7010 KiB  
Article
Numerical and Experimental Investigation on Performance of Thermal Energy Storage Integrated Micro-Cold Storage Unit
by Sreelekha Arun, Rushikesh J. Boche, Prahas Nambiar, Prince Ekka, Pratham Panalkar, Vaibhav Kumar, Anindita Roy and Stefano Landini
Appl. Sci. 2024, 14(12), 5166; https://doi.org/10.3390/app14125166 - 14 Jun 2024
Cited by 6 | Viewed by 1745
Abstract
Preservation of perishable food produce is a major concern in the cold chain supply system. Development of an energy-efficient on-farm cold storage facility, hence, becomes essential. Integration of thermal storage into a vapor compression refrigeration (VCR)-driven cold room is a promising technology that [...] Read more.
Preservation of perishable food produce is a major concern in the cold chain supply system. Development of an energy-efficient on-farm cold storage facility, hence, becomes essential. Integration of thermal storage into a vapor compression refrigeration (VCR)-driven cold room is a promising technology that can reduce power consumption and act as a thermal backup. However, designing a latent heat energy storage heat exchanger encounters challenges, such as low thermal conductivity of phase change materials (PCMs) and poor heat exchanger efficiencies, leading to ineffective charging–discharging cycles. The current study investigates the effect of the integration of a Phase Change Material (PCM) in terms of the selection of the PCM, the optimal positioning of the PCM heat exchanger, and the selection of heat exchanger encapsulation material. Numerical analysis was undertaken using 3D Experience software (version: 2024x.D31.R426rel.202403212040) by creating a 3D model of a 3.4 m3 micro-cold storage unit to understand the inner temperature distribution profile. Further, the experimental setup was developed, and tests were conducted, during which the energy consumption of 1.1 kWh was recorded for the total compressor run time of 1 h. Results indicated that an improved cooling effect was achieved by positioning the PCM trays on the wall opposite the evaporator. It is seen that a temperature difference in the range of 5 to 7 °C exists between the phase change temperature of PCM and the optimal storage temperature depending on the encapsulation material. Hence, PCM selection for thermal storage applications would have an important bearing on the material and configuration of the PCM encapsulation. Full article
(This article belongs to the Topic Energy Storage and Conversion Systems, 2nd Edition)
Show Figures

Figure 1

25 pages, 3954 KiB  
Article
Enhanced Indoor Air Quality Dashboard Framework and Index for Higher Educational Institutions
by Farah Shoukry, Sherif Goubran and Khaled Tarabieh
Buildings 2024, 14(6), 1640; https://doi.org/10.3390/buildings14061640 - 3 Jun 2024
Cited by 2 | Viewed by 1835
Abstract
This research proposes a 10-step methodology for developing an enhanced IAQ dashboard and classroom index (CI) in higher educational facilities located in arid environments. The identified parameters of the enhanced IAQ dashboard–inspired by the pandemic experience, result from the literature review and the [...] Read more.
This research proposes a 10-step methodology for developing an enhanced IAQ dashboard and classroom index (CI) in higher educational facilities located in arid environments. The identified parameters of the enhanced IAQ dashboard–inspired by the pandemic experience, result from the literature review and the outcome of two electronic surveys of (52) respondents, including health professionals and facility management experts. On the other hand, the indicators included in the CI are based on (80) occupant survey responses, including parameters related to IAQ, Indoor Environmental Quality (IEQ), and thermal comfort, amongst other classroom operative considerations. The CI is further tested in four learning spaces at the American University in Cairo, Egypt. The main contribution of this research is to suggest a conceptual visualization of the dashboard and a practical classroom index that integrates a representative number of contextual indicators to recommend optimal IAQ scenarios for a given educational facility. This study concludes by highlighting several key findings: (1) both qualitative and quantitative metrics are necessary to capture indoor air quality-related parameters accurately; (2) tailoring the dashboard as well as the CI to specific contexts enhances its applicability across diverse locations; and finally, (3) the IAQ dashboard and CI offer flexibility for ad-hoc applications. Full article
(This article belongs to the Special Issue Healthy, Digital and Sustainable Buildings and Cities)
Show Figures

Figure 1

Back to TopTop