Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,044)

Search Parameters:
Keywords = institutional tools

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1514 KiB  
Article
Measuring the Digital Economy in Kazakhstan: From Global Indices to a Contextual Composite Index (IDED)
by Oxana Denissova, Zhadyra Konurbayeva, Monika Kulisz, Madina Yussubaliyeva and Saltanat Suieubayeva
Economies 2025, 13(8), 225; https://doi.org/10.3390/economies13080225 (registering DOI) - 2 Aug 2025
Abstract
This study examines the development of the digital economy and society in the Republic of Kazakhstan by combining international benchmarking with a context-specific national framework. It highlights the limitations of existing global indices such as DESI, NRI, and EGDI in capturing the structural [...] Read more.
This study examines the development of the digital economy and society in the Republic of Kazakhstan by combining international benchmarking with a context-specific national framework. It highlights the limitations of existing global indices such as DESI, NRI, and EGDI in capturing the structural and institutional dimensions of digital transformation in emerging economies. To address this gap, the study introduces a novel composite metric, the Index of Digital Economy Development (IDED), which integrates five sub-indices: infrastructure, usage, human capital, economic digitization, and transformation effectiveness. The methodology involves comparative index analysis, the construction of the IDED, and statistical validation through a public opinion survey and regression modeling. Key findings indicate that cybersecurity is a critical yet under-represented component of digital development, showing strong empirical correlations with DESI scores in benchmark countries. The results also highlight Kazakhstan’s strengths in digital public services and internet access, contrasted with weaknesses in business digitization and innovation. The proposed IDED offers a more comprehensive and policy-relevant tool for assessing digital progress in transitional economies. This study contributes to the literature by proposing a replicable index structure and providing empirical evidence for the inclusion of cybersecurity in national digital economy assessments. The aim of the study is to assess Kazakhstan’s digital economy development by addressing limitations in global measurement frameworks. Methodologically, it combines comparative index analysis, the construction of a national composite index (IDED), and statistical validation using a regional survey and regression analysis. The findings reveal both strengths and gaps in Kazakhstan’s digital landscape, particularly in cybersecurity and SME digitalization. The IDED introduces an innovative, context-sensitive framework that enhances the measurement of digital transformation in transitional economies. Full article
Show Figures

Figure 1

20 pages, 865 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 (registering DOI) - 1 Aug 2025
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

35 pages, 575 KiB  
Systematic Review
The Interplay Between Juvenile Delinquency and ADHD: A Systematic Review of Social, Psychological, and Educational Aspects
by Márta Miklósi and Karolina Eszter Kovács
Behav. Sci. 2025, 15(8), 1044; https://doi.org/10.3390/bs15081044 (registering DOI) - 1 Aug 2025
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by inattention, hyperactivity, and impulsivity, frequently observed in juvenile offenders. This systematic review explores the interplay between ADHD and juvenile delinquency, focusing on behavioural, psychological, and social dimensions. Following the PRISMA guidelines, a systematic [...] Read more.
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by inattention, hyperactivity, and impulsivity, frequently observed in juvenile offenders. This systematic review explores the interplay between ADHD and juvenile delinquency, focusing on behavioural, psychological, and social dimensions. Following the PRISMA guidelines, a systematic literature review was conducted using EBSCO Discovery Service, Science Direct, PubMed, and snowballing techniques. Studies meeting specific inclusion criteria, including juvenile offenders diagnosed with ADHD and comparisons to non-offender or non-ADHD control groups, were analysed. The methodological quality of studies was assessed using the Joanna Briggs Institute appraisal tools. A total of 21 studies were included, highlighting significant associations between ADHD and juvenile delinquency. ADHD symptoms, especially impulsivity and emotional dysregulation, were linked to an earlier onset of offending and higher rates of property crimes. Comorbidities such as conduct disorder, substance use disorder, and depression exacerbated these behaviours. Sociodemographic factors like low education levels and adverse family environments were also critical modifiers. Early intervention and tailored treatment approaches were emphasised to address these challenges. The findings underscore the need for early diagnosis, individualised treatment, and integrative rehabilitation programmes within the juvenile justice system to mitigate long-term risks and promote social inclusion. Full article
Show Figures

Figure 1

22 pages, 2120 KiB  
Article
Machine Learning Algorithms and Explainable Artificial Intelligence for Property Valuation
by Gabriella Maselli and Antonio Nesticò
Real Estate 2025, 2(3), 12; https://doi.org/10.3390/realestate2030012 - 1 Aug 2025
Abstract
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships [...] Read more.
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships among variables. However, their application raises two main critical issues: (i) the risk of overfitting, especially with small datasets or with noisy data; (ii) the interpretive issues associated with the “black box” nature of many models. Within this framework, this paper proposes a methodological approach that addresses both these issues, comparing the predictive performance of three ML algorithms—k-Nearest Neighbors (kNN), Random Forest (RF), and the Artificial Neural Network (ANN)—applied to the housing market in the city of Salerno, Italy. For each model, overfitting is preliminarily assessed to ensure predictive robustness. Subsequently, the results are interpreted using explainability techniques, such as SHapley Additive exPlanations (SHAPs) and Permutation Feature Importance (PFI). This analysis reveals that the Random Forest offers the best balance between predictive accuracy and transparency, with features such as area and proximity to the train station identified as the main drivers of property prices. kNN and the ANN are viable alternatives that are particularly robust in terms of generalization. The results demonstrate how the defined methodological framework successfully balances predictive effectiveness and interpretability, supporting the informed and transparent use of ML in real estate valuation. Full article
Show Figures

Figure 1

15 pages, 1515 KiB  
Article
Ontology-Based Data Pipeline for Semantic Reaction Classification and Research Data Management
by Hendrik Borgelt, Frederick Gabriel Kitel and Norbert Kockmann
Computers 2025, 14(8), 311; https://doi.org/10.3390/computers14080311 (registering DOI) - 1 Aug 2025
Abstract
Catalysis research is complex and interdisciplinary, involving diverse physical effects and challenging data practices. Research data often captures only selected aspects, such as specific reactants and products, limiting its utility for machine learning and the implementation of FAIR (Findable, Accessible, Interoperable, Reusable) workflows. [...] Read more.
Catalysis research is complex and interdisciplinary, involving diverse physical effects and challenging data practices. Research data often captures only selected aspects, such as specific reactants and products, limiting its utility for machine learning and the implementation of FAIR (Findable, Accessible, Interoperable, Reusable) workflows. To improve this, semantic structuring through ontologies is essential. This work extends the established ontologies by refining logical relations and integrating semantic tools such as the Web Ontology Language or the Shape Constraint Language. It incorporates application programming interfaces from chemical databases, such as the Kyoto Encyclopedia of Genes and Genomes and the National Institute of Health’s PubChem database, and builds upon established ontologies. A key innovation lies in automatically decomposing chemical substances through database entries and chemical identifier representations to identify functional groups, enabling more generalized reaction classification. Using new semantic functionality, functional groups are flexibly addressed, improving the classification of reactions such as saponification and ester cleavage with simultaneous oxidation. A graphical interface (GUI) supports user interaction with the knowledge graph, enabling ontological reasoning and querying. This approach demonstrates improved specificity of the newly established ontology over its predecessors and offers a more user-friendly interface for engaging with structured chemical knowledge. Future work will focus on expanding ontology coverage to support a wider range of reactions in catalysis research. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 (registering DOI) - 1 Aug 2025
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

37 pages, 2065 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 - 31 Jul 2025
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
19 pages, 440 KiB  
Article
Contextual Study of Technostress in Higher Education: Psychometric Evidence for the TS4US Scale from Lima, Peru
by Guillermo Araya-Ugarte, Miguel Armesto-Céspedes, Nicolás Contreras-Barraza, Alejandro Vega-Muñoz, Guido Salazar-Sepúlveda and Nelson Lay
Sustainability 2025, 17(15), 6974; https://doi.org/10.3390/su17156974 (registering DOI) - 31 Jul 2025
Abstract
Sustainable education requires addressing the challenges posed by digital transformation, including technostress among university students. This study evaluates technostress levels in higher education through the validation of the TS4US scale and its implications for sustainable learning environments. A cross-sectional study was conducted with [...] Read more.
Sustainable education requires addressing the challenges posed by digital transformation, including technostress among university students. This study evaluates technostress levels in higher education through the validation of the TS4US scale and its implications for sustainable learning environments. A cross-sectional study was conducted with 328 university students from four districts in Lima, Peru, using an online survey to measure technostress. Confirmatory factor analysis (CFA) was performed to assess the psychometric properties of the TS4US scale, resulting in a refined model with two latent factors and thirteen validated items. Findings indicate that 28% of students experience high technostress levels, while 5% report very high levels, though no significant associations were found between technostress and sociodemographic variables such as campus location, employment status, gender, and academic level. The TS4US instrument had been previously validated in Chile; this study confirms its structure in a new sociocultural context, reinforcing its cross-cultural applicability. These results highlight the need for sustainable strategies to mitigate technostress in higher education, including institutional support, digital literacy programs, and policies fostering a balanced technological environment. Addressing technostress is essential for promoting sustainable education (SDG4) and enhancing student well-being (SDG3). This study directly contributes to the achievement of Sustainable Development Goals 3 (Good Health and Well-being) and 4 (Quality Education) by providing validated tools and evidence-based recommendations to promote mental health and equitable access to digital education in Latin America. Future research should explore cross-country comparisons and targeted interventions, including digital well-being initiatives and adaptive learning strategies, to ensure a resilient and sustainable academic ecosystem. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

40 pages, 6841 KiB  
Article
Distributionally Robust Multivariate Stochastic Cone Order Portfolio Optimization: Theory and Evidence from Borsa Istanbul
by Larissa Margerata Batrancea, Mehmet Ali Balcı, Ömer Akgüller and Lucian Gaban
Mathematics 2025, 13(15), 2473; https://doi.org/10.3390/math13152473 - 31 Jul 2025
Abstract
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO [...] Read more.
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO employs data-driven cone selection calibrated to market regimes, along with coherent tail-risk operators that generalize Conditional Value-at-Risk to the multivariate setting. We derive a tractable second-order cone programming reformulation and demonstrate statistical consistency under empirical ambiguity sets. Empirically, we apply DR-MSCO to 23 Borsa Istanbul equities from 2021–2024, using a rolling estimation window and realistic transaction costs. Compared to classical mean–variance and standard distributionally robust benchmarks, DR-MSCO achieves higher overall and crisis-period Sharpe ratios (2.18 vs. 2.09 full sample; 0.95 vs. 0.69 during crises), reduces maximum drawdown by 10%, and yields endogenous diversification without exogenous constraints. Our results underscore the practical benefits of combining multivariate preference modeling with distributional robustness, offering institutional investors a tractable tool for resilient portfolio construction in volatile emerging markets. Full article
(This article belongs to the Special Issue Modern Trends in Mathematics, Probability and Statistics for Finance)
Show Figures

Figure 1

18 pages, 255 KiB  
Article
Making the Invisible Visible: Addressing the Sexuality Education Needs of Persons with Disabilities Who Identify as Queer in Kenya
by Amani Karisa, Mchungwani Rashid, Zakayo Wanjihia, Fridah Kiambati, Lydia Namatende-Sakwa, Emmy Kageha Igonya, Anthony Idowu Ajayi, Benta Abuya, Caroline W. Kabiru and Moses Ngware
Disabilities 2025, 5(3), 69; https://doi.org/10.3390/disabilities5030069 (registering DOI) - 31 Jul 2025
Abstract
Persons with disabilities face barriers to accessing sexuality education. For those who identify as queer, these challenges are compounded by stigma, ableism, and heteronormativity, resulting in distinct and overlooked experiences. This study explored the sexuality education needs of persons with disabilities who identify [...] Read more.
Persons with disabilities face barriers to accessing sexuality education. For those who identify as queer, these challenges are compounded by stigma, ableism, and heteronormativity, resulting in distinct and overlooked experiences. This study explored the sexuality education needs of persons with disabilities who identify as queer in Kenya—a neglected demographic—using a phenomenological approach. Data were collected through a focus group discussion with six participants and analyzed thematically. Three themes emerged: invisibility and erasure; unprepared institutions and constrained support networks; and agency and everyday resistance. Educational institutions often overlook the intersectional needs of persons with disabilities who identify as queer, leaving them without adequate tools to navigate relationships, sexuality, and rights. Support systems are often unprepared or unwilling to address these needs. Societal attitudes that desexualize disability and marginalize queerness intersect to produce compounded exclusion. Despite these challenges, participants demonstrated agency by using digital spaces and informal networks to resist exclusion. This calls for policy reforms that move beyond tokenism to address the lived realities of multiply marginalized groups. Policy reform means not only a legal or governmental shift but also a broader cultural and institutional process that creates space for recognition, protection, and participation. Full article
37 pages, 887 KiB  
Review
Prognostic Factors in Colorectal Liver Metastases: An Exhaustive Review of the Literature and Future Prospectives
by Maria Conticchio, Emilie Uldry, Martin Hübner, Antonia Digklia, Montserrat Fraga, Christine Sempoux, Jean Louis Raisaro and David Fuks
Cancers 2025, 17(15), 2539; https://doi.org/10.3390/cancers17152539 - 31 Jul 2025
Viewed by 1
Abstract
Background: Colorectal liver metastasis (CRLM) represents a major clinical challenge in oncology, affecting 25–50% of colorectal cancer patients and significantly impacting survival. While multimodal therapies—including surgical resection, systemic chemotherapy, and local ablative techniques—have improved outcomes, prognosis remains heterogeneous due to variations in [...] Read more.
Background: Colorectal liver metastasis (CRLM) represents a major clinical challenge in oncology, affecting 25–50% of colorectal cancer patients and significantly impacting survival. While multimodal therapies—including surgical resection, systemic chemotherapy, and local ablative techniques—have improved outcomes, prognosis remains heterogeneous due to variations in tumor biology, patient factors, and institutional practices. Methods: This review synthesizes current evidence on prognostic factors influencing CRLM management, encompassing clinical (e.g., tumor burden, anatomic distribution, timing of metastases), biological (e.g., CEA levels, inflammatory markers), and molecular (e.g., RAS/BRAF mutations, MSI status, HER2 alterations) determinants. Results: Key findings highlight the critical role of molecular profiling in guiding therapeutic decisions, with RAS/BRAF mutations predicting resistance to anti-EGFR therapies and MSI-H status indicating potential responsiveness to immunotherapy. Emerging tools like circulating tumor DNA (ctDNA) and radiomics offer promise for dynamic risk stratification and early recurrence detection, while the gut microbiome is increasingly recognized as a modulator of treatment response. Conclusions: Despite advancements, challenges persist in standardizing resectability criteria and integrating multidisciplinary approaches. Current guidelines (NCCN, ESMO, ASCO) emphasize personalized strategies but lack granularity in terms of incorporating novel biomarkers. This exhaustive review underscores the imperative for the development of a unified, biomarker-integrated framework to refine CRLM management and improve long-term outcomes. Full article
Show Figures

Figure 1

25 pages, 6180 KiB  
Article
Study on the Spatial Distribution Characteristics and Influencing Factors of Intangible Cultural Heritage Along the Great Wall of Hebei Province
by Yu Chen, Jingwen Zhao, Xinyi Zhao, Zeyi Wang, Zhe Xu, Shilin Li and Weishang Li
Sustainability 2025, 17(15), 6962; https://doi.org/10.3390/su17156962 (registering DOI) - 31 Jul 2025
Viewed by 4
Abstract
The development of the Great Wall National Cultural Park has unleashed the potential for integrating cultural and tourism development along the Great Wall. However, ICH along the Great Wall, a key part of its cultural identity, suffers from low recognition and a mismatch [...] Read more.
The development of the Great Wall National Cultural Park has unleashed the potential for integrating cultural and tourism development along the Great Wall. However, ICH along the Great Wall, a key part of its cultural identity, suffers from low recognition and a mismatch between protection and development efforts. This study analyzes provincial-level and above ICH along Hebei’s Great Wall using geospatial tools and the Geographical Detector model to explore distribution patterns and influencing factors, while Geographically Weighted Regression is utilized to reveal spatial heterogeneity. It tests two hypotheses: (H1) ICH shows a clustered pattern; (H2) economic factors have a greater impact than cultural and natural factors. Key findings show: (1) ICH distribution is numerically balanced north–south but spatially uneven, with dense clusters in the south and scattered patterns in the north. (2) ICH and crafts cluster significantly, while dramatic balladry spreads evenly, and other categories are random. (3) Average annual temperature and precipitation have the greatest impact on ICH distribution, with the factors ranked as: natural > cultural > economic. Multidimensional interactions show significant enhancement effects. (4) Influencing factors vary spatially. Population density, transport, temperature, and traditional villages are positively related to ICH. Elevation, precipitation, tourism, and cultural institutions show mixed effects across regions. These insights support targeted ICH conservation and sustainable development in the Great Wall cultural corridor. Full article
(This article belongs to the Collection Sustainable Conservation of Urban and Cultural Heritage)
Show Figures

Figure 1

23 pages, 854 KiB  
Article
Adopting Generative AI in Future Classrooms: A Study of Preservice Teachers’ Intentions and Influencing Factors
by Yang Liu, Qiu Wang and Jing Lei
Behav. Sci. 2025, 15(8), 1040; https://doi.org/10.3390/bs15081040 - 31 Jul 2025
Viewed by 45
Abstract
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity [...] Read more.
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity using Khanmigo, a domain-specific AI platform for K-12 education, PTs explored AI-supported instructional tasks. Post-activity data were analyzed using PLS-SEM. The results showed that perceived usefulness (PU), perceived ease-of-use (PEU), and self-efficacy (SE) significantly predicted behavioral intention (BI) to adopt GenAI, with SE also influencing both PU and PEU. Conversely, personal innovativeness in IT and perceived cyber risk showed insignificant effects on BI or PU. The findings underscored the evolving dynamics of TAM constructs in GenAI contexts and highlighted the need to reconceptualize ease-of-use and risk within AI-mediated environments. Practically, the study emphasized the importance of preparing PTs not only to operate AI tools but also to critically interpret and co-design them. These insights inform both theoretical models and teacher education strategies, supporting the ethical and pedagogically meaningful integration of GenAI in K-12 education. Theoretical and practical implications are discussed. Full article
(This article belongs to the Special Issue Artificial Intelligence and Educational Psychology)
Show Figures

Figure 1

25 pages, 893 KiB  
Review
Exploring Sustainable Development Goals and Curriculum Adoption: A Scoping Review from 2020–2025
by Robert Pham Xuan and Marcia Håkansson Lindqvist
Societies 2025, 15(8), 212; https://doi.org/10.3390/soc15080212 - 31 Jul 2025
Viewed by 52
Abstract
This scoping review examines the integration of the Sustainable Development Goals (SDGs)—specifically SDG 4, which concerns quality education—into national curricula at various levels of education between 2020 and 2025. This qualitative study uses the scoping review method to synthesise international research, identifying thematic [...] Read more.
This scoping review examines the integration of the Sustainable Development Goals (SDGs)—specifically SDG 4, which concerns quality education—into national curricula at various levels of education between 2020 and 2025. This qualitative study uses the scoping review method to synthesise international research, identifying thematic trends, methodological approaches, and implications for curriculum development. The analysis reveals a strong focus on higher education, with articles from Asia and Europe dominating the discourse, while perspectives from early childhood education and the Global South are under-represented. Most articles favour qualitative designs, engaging with the SDGs as curricular content, institutional transformation frameworks, or community-based education tools. Despite these promising approaches, significant gaps remain in addressing behavioural change and equity across educational systems. Therefore, the study calls for more inclusive, context-sensitive, and interdisciplinary strategies to support the transformative ambitions of the 2030 Agenda. Full article
Show Figures

Figure 1

Back to TopTop