Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,494)

Search Parameters:
Keywords = input–output network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1613 KB  
Article
Superimposed CSI Feedback Assisted by Inactive Sensing Information
by Mintao Zhang, Haowen Jiang, Zilong Wang, Linsi He, Yuqiao Yang, Mian Ye and Chaojin Qing
Sensors 2025, 25(19), 6156; https://doi.org/10.3390/s25196156 (registering DOI) - 4 Oct 2025
Abstract
In massive multiple-input and multiple-output (mMIMO) systems, superimposed channel state information (CSI) feedback is developed to improve the occupation of uplink bandwidth resources. Nevertheless, the interference from this superimposed mode degrades the recovery performance of both downlink CSI and uplink data sequences. Although [...] Read more.
In massive multiple-input and multiple-output (mMIMO) systems, superimposed channel state information (CSI) feedback is developed to improve the occupation of uplink bandwidth resources. Nevertheless, the interference from this superimposed mode degrades the recovery performance of both downlink CSI and uplink data sequences. Although machine learning (ML)-based methods effectively mitigate superimposed interference by leveraging the multi-domain features of downlink CSI, the complex interactions among network model parameters cause a significant burden on system resources. To address these issues, inspired by sensing-assisted communication, we propose a novel superimposed CSI feedback method assisted by inactive sensing information that previously existed but was not utilized at the base station (BS). To the best of our knowledge, this is the first time that inactive sensing information is utilized to enhance superimposed CSI feedback. In this method, a new type of modal data, different from communication data, is developed to aid in interference suppression without requiring additional hardware at the BS. Specifically, the proposed method utilizes location, speed, and path information extracted from sensing devices to derive prior information. Then, based on the derived prior information, denoising processing is applied to both the delay and Doppler dimensions of downlink CSI in the delay—Doppler (DD) domain, significantly enhancing the recovery accuracy. Simulation results demonstrate the performance improvement of downlink CSI and uplink data sequences when compared to both classic and novel superimposed CSI feedback methods. Moreover, against parameter variations, simulation results also validate the robustness of the proposed method. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 3580 KB  
Article
Edge-AI Enabled Resource Allocation for Federated Learning in Cell-Free Massive MIMO-Based 6G Wireless Networks: A Joint Optimization Perspective
by Chen Yang and Quanrong Fang
Electronics 2025, 14(19), 3938; https://doi.org/10.3390/electronics14193938 (registering DOI) - 4 Oct 2025
Abstract
The advent of sixth-generation (6G) wireless networks and cell-free massive multiple-input multiple-output (MIMO) architectures underscores the need for efficient resource allocation to support federated learning (FL) at the network edge. Existing approaches often treat communication, computation, and learning in isolation, overlooking dynamic heterogeneity [...] Read more.
The advent of sixth-generation (6G) wireless networks and cell-free massive multiple-input multiple-output (MIMO) architectures underscores the need for efficient resource allocation to support federated learning (FL) at the network edge. Existing approaches often treat communication, computation, and learning in isolation, overlooking dynamic heterogeneity and fairness, which leads to degraded performance in large-scale deployments. To address this gap, we propose a joint optimization framework that integrates communication–computation co-design, fairness-aware aggregation, and a hybrid strategy combining convex relaxation with deep reinforcement learning. Extensive experiments on benchmark vision datasets and real-world wireless traces demonstrate that the framework achieves up to 23% higher accuracy, 18% lower latency, and 21% energy savings compared with state-of-the-art baselines. These findings advance joint optimization in federated learning (FL) and demonstrate scalability for 6G applications. Full article
25 pages, 7875 KB  
Article
Intelligent Optimal Seismic Design of Buildings Based on the Inversion of Artificial Neural Networks
by Augusto Montisci, Francesca Pibi, Maria Cristina Porcu and Juan Carlos Vielma
Appl. Sci. 2025, 15(19), 10713; https://doi.org/10.3390/app151910713 (registering DOI) - 4 Oct 2025
Abstract
The growing need for safe, cheap and sustainable earthquake-resistant buildings means that efficient methods for optimal seismic design must be found. The complexity and nonlinearity of the problem can be addressed using advanced automated techniques. This paper presents an intelligent three-step procedure for [...] Read more.
The growing need for safe, cheap and sustainable earthquake-resistant buildings means that efficient methods for optimal seismic design must be found. The complexity and nonlinearity of the problem can be addressed using advanced automated techniques. This paper presents an intelligent three-step procedure for optimally designing earthquake-resistant buildings based on the training (1st step) and successive inversion (2nd step) of Multi-Layer Perceptron Neural Networks. This involves solving the inverse problem of determining the optimal design parameters that meet pre-assigned, code-based performance targets, by means of a gradient-based optimization algorithm (3rd step). The effectiveness of the procedure was tested using an archetypal multistory, moment-resisting, concentrically braced steel frame with active tension diagonal bracing. The input dataset was obtained by varying four design parameters. The output dataset resulted from performance variables obtained through non-linear dynamic analyses carried out under three earthquakes consistent with the Chilean code spectrum, for all cases considered. Three spectrum-consistent records are sufficient for code-based seismic design, while each seismic excitation provides a wealth of information about the behavior of the structure, highlighting potential issues. For optimization purposes, only information relevant to critical sections was used as a performance indicator. Thus, the dataset for training consisted of pairs of design parameter sets and their corresponding performance indicator sets. A dedicated MLP was trained for each of the outputs over the entire dataset, which greatly reduced the total complexity of the problem without compromising the effectiveness of the solution. Due to the comparatively low number of cases considered, the leave-one-out method was adopted, which made the validation process more rigorous than usual since each case acted once as a validation set. The trained network was then inverted to find the input design search domain, where a cost-effective gradient-based algorithm determined the optimal design parameters. The feasibility of the solution was tested through numerical analyses, which proved the effectiveness of the proposed artificial intelligence-aided optimal seismic design procedure. Although the proposed methodology was tested on an archetypal building, the significance of the results highlights the effectiveness of the three-step procedure in solving complex optimization problems. This paves the way for its use in the design optimization of different kinds of earthquake-resistant buildings. Full article
Show Figures

Figure 1

29 pages, 10675 KB  
Article
Stack Coupling Machine Learning Model Could Enhance the Accuracy in Short-Term Water Quality Prediction
by Kai Zhang, Rui Xia, Yao Wang, Yan Chen, Xiao Wang and Jinghui Dou
Water 2025, 17(19), 2868; https://doi.org/10.3390/w17192868 - 1 Oct 2025
Abstract
Traditional river quality models struggle to accurately predict river water quality in watersheds dominated by non-point source pollution due to computational complexity and uncertain inputs. This study addresses this by developing a novel coupling model integrating a gradient boosting algorithm (Light GBM) and [...] Read more.
Traditional river quality models struggle to accurately predict river water quality in watersheds dominated by non-point source pollution due to computational complexity and uncertain inputs. This study addresses this by developing a novel coupling model integrating a gradient boosting algorithm (Light GBM) and a long short-term memory network (LSTM). The method leverages Light GBM for spatial data characteristics and LSTM for temporal sequence dependencies. Model outputs are reciprocally recalculated as inputs and coupled via linear regression, specifically tackling the lag effects of rainfall runoff and upstream pollutant transport. Applied to predict the concentrations of chemical oxygen demand digested by potassium permanganate index (COD) in South China’s Jiuzhoujiang River basin (characterized by rainfall-driven non-point pollution from agriculture/livestock), the coupled model outperformed individual models, increasing prediction accuracy by 8–12% and stability by 15–40% than conventional models, which means it is a more accurate and broadly applicable method for water quality prediction. Analysis confirmed basin rainfall and upstream water quality as the primary drivers of 5-day water quality variation at the SHJ station, influenced by antecedent conditions within 10–15 days. This highly accurate and stable stack coupling method provides valuable scientific support for regional water management. Full article
Show Figures

Figure 1

25 pages, 26694 KB  
Article
Research on Wind Field Correction Method Integrating Position Information and Proxy Divergence
by Jianhong Gan, Mengjia Zhang, Cen Gao, Peiyang Wei, Zhibin Li and Chunjiang Wu
Biomimetics 2025, 10(10), 651; https://doi.org/10.3390/biomimetics10100651 - 1 Oct 2025
Abstract
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as [...] Read more.
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as the true value, which relies on interpolation calculation, which directly affects the accuracy of the correction results. To address these issues, we propose a new deep learning model, PPWNet. The model directly uses sparse and discretely distributed observation data as the true value, which integrates observation point positions and a physical consistency term to achieve a high-precision corrected wind field. The model design is inspired by biological intelligence. First, observation point positions are encoded as input and observation values are included in the loss function. Second, a parallel dual-branch DenseInception network is employed to extract multi-scale grid features, simulating the hierarchical processing of the biological visual system. Meanwhile, PPWNet references the PointNet architecture and introduces an attention mechanism to efficiently extract features from sparse and irregular observation positions. This mechanism reflects the selective focus of cognitive functions. Furthermore, this paper incorporates physical knowledge into the model optimization process by adding a learned physical consistency term to the loss function, ensuring that the corrected results not only approximate the observations but also adhere to physical laws. Finally, hyperparameters are automatically tuned using the Bayesian TPE algorithm. Experiments demonstrate that PPWNet outperforms both traditional and existing deep learning methods. It reduces the MAE by 38.65% and the RMSE by 28.93%. The corrected wind field shows better agreement with observations in both wind speed and direction, confirming the effectiveness of incorporating position information and a physics-informed approach into deep learning-based wind field correction. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

22 pages, 4398 KB  
Article
Abrasive Waterjet Machining of r-GO Infused Mg Fiber Metal Laminates: ANFIS Modelling and Optimization Through Antlion Optimizer Algorithm
by Devaraj Rajamani, Mahalingam Siva Kumar and Arulvalavan Tamilarasan
Materials 2025, 18(19), 4480; https://doi.org/10.3390/ma18194480 - 25 Sep 2025
Abstract
This research proposes an intelligent modeling and optimization strategy for abrasive waterjet machining (AWJM) of magnesium-based fiber metal laminates (FMLs) reinforced with reduced graphene oxide (r-GO). Experiments were designed using the Box–Behnken method, considering waterjet pressure, stand-off distance, traverse speed, and r-GO content [...] Read more.
This research proposes an intelligent modeling and optimization strategy for abrasive waterjet machining (AWJM) of magnesium-based fiber metal laminates (FMLs) reinforced with reduced graphene oxide (r-GO). Experiments were designed using the Box–Behnken method, considering waterjet pressure, stand-off distance, traverse speed, and r-GO content as inputs, while kerf taper (Kt), surface roughness (Ra), and material removal rate (MRR) were evaluated as outputs. Adaptive Neuro-Fuzzy Inference System (ANFIS) models were developed for each response, with their critical optimized hyperparameters such as cluster radius, quash factor, and training data split through the dragonfly optimization (DFO) algorithm. The optimized ANFIS networks yielded a high predictive accuracy, with low RMSE and MAPE values and close agreement between predicted and measured results. Four metaheuristic algorithms including particle swarm optimization (PSO), salp swarm optimization (SSO), whale optimization algorithm (WOA), and the antlion optimizer (ALO) were applied for simultaneous optimization, using a TOPSIS-based single-objective formulation. ALO outperformed the others, identifying 325 MPa waterjet pressure, 2.5 mm stand-off, 800 mm/min traverse speed, and 0.00602 wt% r-GO addition in FMLs as optimal conditions. These settings produced a kerf taper of 2.595°, surface roughness of 8.9897 µm, and material removal rate of 138.13 g/min. The proposed ANFIS-ALO framework demonstrates strong potential for achieving precision and productivity in AWJM of hybrid laminates. Full article
Show Figures

Figure 1

25 pages, 10025 KB  
Article
Short-Term Photovoltaic Power Forecasting Based on ICEEMDAN-TCN-BiLSTM-MHA
by Yuan Li, Shiming Zhai, Guoyang Yi, Shaoyun Pang and Xu Luo
Symmetry 2025, 17(10), 1599; https://doi.org/10.3390/sym17101599 - 25 Sep 2025
Abstract
In this paper, an efficient hybrid photovoltaic (PV) power forecasting model is proposed to enhance the stability and accuracy of PV power prediction under typical weather conditions. First, the Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is employed to decompose [...] Read more.
In this paper, an efficient hybrid photovoltaic (PV) power forecasting model is proposed to enhance the stability and accuracy of PV power prediction under typical weather conditions. First, the Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is employed to decompose both meteorological features affecting PV power and the power output itself into intrinsic mode functions. This process enhances the stationarity and noise robustness of input data while reducing the computational complexity of subsequent model processing. To enhance the detail-capturing capability of the Bidirectional Long Short-Term Memory (BiLSTM) model and improve its dynamic response speed and prediction accuracy under abrupt irradiance fluctuations, we integrate a Temporal Convolutional Network (TCN) into the BiLSTM architecture. Finally, a Multi-head Self-Attention (MHA) mechanism is employed to dynamically weight multivariate meteorological features, enhancing the model’s adaptive focus on key meteorological factors while suppressing noise interference. The results show that the ICEEMDAN-TCN-BiLSTM-MHA combined model reduces the Mean Absolute Percentage Error (MAPE) by 78.46% and 78.59% compared to the BiLSTM model in sunny and cloudy scenarios, respectively, and by 58.44% in rainy scenarios. This validates the accuracy and stability of the ICEEMDAN-TCN-BiLSTM-MHA combined model, demonstrating its application potential and promotional value in the field of PV power forecasting. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 1027 KB  
Article
A Convolutional-Transformer Residual Network for Channel Estimation in Intelligent Reflective Surface Aided MIMO Systems
by Qingying Wu, Junqi Bao, Hui Xu, Benjamin K. Ng, Chan-Tong Lam and Sio-Kei Im
Sensors 2025, 25(19), 5959; https://doi.org/10.3390/s25195959 - 25 Sep 2025
Abstract
Intelligent Reflective Surface (IRS)-aided Multiple-Input Multiple-Output (MIMO) systems have emerged as a promising solution to enhance spectral and energy efficiency in future wireless communications. However, accurate channel estimation remains a key challenge due to the passive nature and high dimensionality of IRS channels. [...] Read more.
Intelligent Reflective Surface (IRS)-aided Multiple-Input Multiple-Output (MIMO) systems have emerged as a promising solution to enhance spectral and energy efficiency in future wireless communications. However, accurate channel estimation remains a key challenge due to the passive nature and high dimensionality of IRS channels. This paper proposes a lightweight hybrid framework for cascaded channel estimation by combining a physics-based Bilinear Alternating Least Squares (BALS) algorithm with a deep neural network named ConvTrans-ResNet. The network integrates convolutional embeddings and Transformer modules within a residual learning architecture to exploit both local and global spatial features effectively while ensuring training stability. A series of ablation studies is conducted to optimize architectural components, resulting in a compact configuration with low parameter count and computational complexity. Extensive simulations demonstrate that the proposed method significantly outperforms state-of-the-art neural models such as HA02, ReEsNet, and InterpResNet across a wide range of SNR levels and IRS element sizes in terms of the Normalized Mean Squared Error (NMSE). Compared to existing solutions, our method achieves better estimation accuracy with improved efficiency, making it suitable for practical deployment in IRS-aided systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 6315 KB  
Article
Optimal Parameter Estimation for Solar PV Panel Based on ANN and Adaptive Particle Swarm Optimization
by Wai Lun Lo, Henry Shu Hung Chung, Richard Tai Chiu Hsung, Hong Fu, Tony Yulin Zhu, Tak Wai Shen and Harris Sik Ho Tsang
Algorithms 2025, 18(10), 598; https://doi.org/10.3390/a18100598 - 24 Sep 2025
Viewed by 19
Abstract
Parameter estimation for solar photovoltaic panels is a popular research topic in green energy. Model parameters can be used for fault diagnosis in solar panels. Artificial neural network (ANN) approaches have been developed to estimate the model parameters of solar panels. In this [...] Read more.
Parameter estimation for solar photovoltaic panels is a popular research topic in green energy. Model parameters can be used for fault diagnosis in solar panels. Artificial neural network (ANN) approaches have been developed to estimate the model parameters of solar panels. In this study, an ANN and Adaptive Particle Swarm Optimization (APSO) approach for model parameter estimation of solar panel is proposed. Load perturbation is injected at the output of the solar PV panel, and the load voltage and current time series are measured. The current and voltage vectors are used as inputs for an ANN, which is used as a classifier for the ranges of the model parameters. The population of the APSO is initialized according to the results of the ANN classifier, and the APSO algorithm is then used to estimate the model parameters of the PV panel. Simulations and experimental studies show that the proposed method has better performance than conventional PSO, and it requires a smaller number of generations to achieve an average parameter estimation error of less than 5%. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

25 pages, 6447 KB  
Article
Data-Driven Multi-Mode Adaptive Control for Distribution Networks with Multi-Region Coordination
by Youzhuo Zheng, Hengrong Zhang, Zhi Long, Shiyuan Gao, Qihang Yang and Haoran Ji
Processes 2025, 13(10), 3046; https://doi.org/10.3390/pr13103046 - 24 Sep 2025
Viewed by 45
Abstract
The high penetration of distributed generators (DGs) causes severe voltage fluctuations and voltage limit violations in distribution networks. Traditional control methods rely on precise line parameters, which are often unavailable or inaccurate, and therefore are limited in practical applications. This paper proposes a [...] Read more.
The high penetration of distributed generators (DGs) causes severe voltage fluctuations and voltage limit violations in distribution networks. Traditional control methods rely on precise line parameters, which are often unavailable or inaccurate, and therefore are limited in practical applications. This paper proposes a data-driven multi-mode adaptive control method with multi-region coordination to enhance the operational performance of distribution networks. First, the network is partitioned into multiple regions, each equipped with a local controller to formulate reactive power control strategies for DGs. Second, regions exchange voltage and current measurements to establish linear input–output relationships through dynamic linearization, thereby developing a multi-mode model for different control objectives. Finally, each region employs the gradient descent method to iteratively optimize its control strategy, enabling fast responses to changing operating conditions in distribution networks. Case studies on modified IEEE 33-node and 123-node test systems demonstrate that the proposed method reduces voltage deviation, load imbalance, and power loss by 31.25%, 19.17%, and 20.68%, respectively, and maintains strong scalability for application in large-scale distribution networks. Full article
(This article belongs to the Special Issue Distributed Intelligent Energy Systems)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
A Physics-Informed Neural Network Integration Framework for Efficient Dynamic Fracture Simulation in an Explicit Algorithm
by Mingyang Wan, Yue Pan and Zhennan Zhang
Appl. Sci. 2025, 15(19), 10336; https://doi.org/10.3390/app151910336 - 23 Sep 2025
Viewed by 117
Abstract
The conventional dynamic fracture simulation by using the explicit algorithm often involves a large number of iteration computation due to the extremely small time interval. Thus, the most time-consuming process is the integration of constitutive relation. To improve the efficiency of the dynamic [...] Read more.
The conventional dynamic fracture simulation by using the explicit algorithm often involves a large number of iteration computation due to the extremely small time interval. Thus, the most time-consuming process is the integration of constitutive relation. To improve the efficiency of the dynamic fracture simulation, a physics-informed neural network integration (PINNI) model is developed to calculate the integration of constitutive relation. PINNI employs a shallow multilayer perceptron with integrable activations to approximate constitutive integrand. To train PINNI, a large number of strains in a reasonable range are generated at first, and then the corresponding stresses are calculated by the mechanical constitutive relation. With the generated strains as input data and the calculated stresses as output data, the PINNI can be trained to reach a very high precision, whose relative error is about 7.8×105%. Next, the mechanical integration of constitutive relation is replaced by the well-trained PINNI to perform the dynamic fracture simulation. It is found that the simulation results by the mechanical and PINNI approach are almost the same. This suggests that it is feasible to use PINNI to replace the rigorous mechanical integration of constitutive relation. The computational efficiency is significantly enhanced, especially for the complicated constitutive relation. It provides a new AI-combined approach to dynamic fracture simulation. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

28 pages, 14783 KB  
Article
HSSTN: A Hybrid Spectral–Structural Transformer Network for High-Fidelity Pansharpening
by Weijie Kang, Yuan Feng, Yao Ding, Hongbo Xiang, Xiaobo Liu and Yaoming Cai
Remote Sens. 2025, 17(19), 3271; https://doi.org/10.3390/rs17193271 - 23 Sep 2025
Viewed by 133
Abstract
Pansharpening fuses multispectral (MS) and panchromatic (PAN) remote sensing images to generate outputs with high spatial resolution and spectral fidelity. Nevertheless, conventional methods relying primarily on convolutional neural networks or unimodal fusion strategies frequently fail to bridge the sensor modality gap between MS [...] Read more.
Pansharpening fuses multispectral (MS) and panchromatic (PAN) remote sensing images to generate outputs with high spatial resolution and spectral fidelity. Nevertheless, conventional methods relying primarily on convolutional neural networks or unimodal fusion strategies frequently fail to bridge the sensor modality gap between MS and PAN data. Consequently, spectral distortion and spatial degradation often occur, limiting high-precision downstream applications. To address these issues, this work proposes a Hybrid Spectral–Structural Transformer Network (HSSTN) that enhances multi-level collaboration through comprehensive modelling of spectral–structural feature complementarity. Specifically, the HSSTN implements a three-tier fusion framework. First, an asymmetric dual-stream feature extractor employs a residual block with channel attention (RBCA) in the MS branch to strengthen spectral representation, while a Transformer architecture in the PAN branch extracts high-frequency spatial details, thereby reducing modality discrepancy at the input stage. Subsequently, a target-driven hierarchical fusion network utilises progressive crossmodal attention across scales, ranging from local textures to multi-scale structures, to enable efficient spectral–structural aggregation. Finally, a novel collaborative optimisation loss function preserves spectral integrity while enhancing structural details. Comprehensive experiments conducted on QuickBird, GaoFen-2, and WorldView-3 datasets demonstrate that HSSTN outperforms existing methods in both quantitative metrics and visual quality. Consequently, the resulting images exhibit sharper details and fewer spectral artefacts, showcasing significant advantages in high-fidelity remote sensing image fusion. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

26 pages, 872 KB  
Article
The Untapped Potential of Ascon Hash Functions: Benchmarking, Hardware Profiling, and Application Insights for Secure IoT and Blockchain Systems
by Meera Gladis Kurian and Yuhua Chen
Sensors 2025, 25(19), 5936; https://doi.org/10.3390/s25195936 - 23 Sep 2025
Viewed by 163
Abstract
Hash functions are fundamental components in both cryptographic and non-cryptographic systems, supporting secure authentication, data integrity, fingerprinting, and indexing. While the Ascon family, selected by the National Institute of Standards and Technology (NIST) in 2023 for lightweight cryptography, has been extensively evaluated in [...] Read more.
Hash functions are fundamental components in both cryptographic and non-cryptographic systems, supporting secure authentication, data integrity, fingerprinting, and indexing. While the Ascon family, selected by the National Institute of Standards and Technology (NIST) in 2023 for lightweight cryptography, has been extensively evaluated in its authenticated encryption mode, its hashing and extendable-output variants, namely Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128, have not received the same level of empirical attention. This paper presents a structured benchmarking study of these hash variants using both the SMHasher framework and custom Python-based simulation environments. SMHasher is used to evaluate statistical and structural robustness under constrained, patterned, and low-entropy input conditions, while Python-based experiments assess application-specific performance in Bloom filter-based replay detection at the network edge, Merkle tree aggregation for blockchain transaction integrity, lightweight device fingerprinting for IoT identity management, and tamper-evident logging for distributed ledgers. We compare the performance of Ascon hashes with widely used cryptographic functions such as SHA3 and BLAKE2s, as well as high-speed non-cryptographic hashes including MurmurHash3 and xxHash. We assess avalanche behavior, diffusion consistency, output bias, and keyset sensitivity while also examining Ascon-XOF’s variable-length output capabilities relative to SHAKE for applications such as domain-separated hashing and lightweight key derivation. Experimental results indicate that Ascon hash functions offer strong diffusion, low statistical bias, and competitive performance across both cryptographic and application-specific domains. These properties make them well suited for deployment in resource-constrained systems, including Internet of Things (IoT) devices, blockchain indexing frameworks, and probabilistic authentication architectures. This study provides the first comprehensive empirical evaluation of Ascon hashing modes and offers new insights into their potential as lightweight, structurally resilient alternatives to established hash functions. Full article
(This article belongs to the Special Issue Blockchain-Based Solutions to Secure IoT)
Show Figures

Figure 1

14 pages, 685 KB  
Article
Input-to-Output Stability for Stochastic Complex Networked Control Systems
by Xuexin Li and Shang Gao
Axioms 2025, 14(9), 710; https://doi.org/10.3390/axioms14090710 - 20 Sep 2025
Viewed by 126
Abstract
In this article, input-to-output stability (IOS) for stochastic complex networked control systems (SCNCS) is investigated. By applying Kirchhoff’s matrix tree theorem in graph theory, an appropriate Lyapunov function is established which is related to topological structure and the Lyapunov function of each node [...] Read more.
In this article, input-to-output stability (IOS) for stochastic complex networked control systems (SCNCS) is investigated. By applying Kirchhoff’s matrix tree theorem in graph theory, an appropriate Lyapunov function is established which is related to topological structure and the Lyapunov function of each node system of SCNCS. Combining Lyapunov method and stochastic analysis skills, some sufficient criteria are provided to ensure SCNCS to satisfy IOS. In order to further analyze and verify the validity of our theoretical results, the results are applied to a class of stochastic Lurie coupled control systems on networks (SLCCSN) and the numerical test is performed. Full article
Show Figures

Figure 1

24 pages, 3150 KB  
Article
A Hybrid Deep Learning and Model Predictive Control Framework for Wind Farm Frequency Regulation
by Ziyang Ji, Jie Zhang, Keke Du and Tao Zhou
Sustainability 2025, 17(18), 8445; https://doi.org/10.3390/su17188445 - 20 Sep 2025
Viewed by 233
Abstract
To enhance wind farm frequency regulation in renewable-dominant power systems, this paper proposes a bi-level hybrid framework integrating deep learning and model predictive control (MPC) by retaining the critical wake propagation delay while neglecting higher-order turbulence effects. The upper layer employs a synthetic [...] Read more.
To enhance wind farm frequency regulation in renewable-dominant power systems, this paper proposes a bi-level hybrid framework integrating deep learning and model predictive control (MPC) by retaining the critical wake propagation delay while neglecting higher-order turbulence effects. The upper layer employs a synthetic inertial intelligent control strategy based on contractive autoencoder (CAE) and deep neural network (DNN). Particle swarm optimization (PSO) obtains optimal synthetic inertial parameters for dataset construction, CAE extracts features from multi-dimensional inputs, and DNN outputs optimal coefficients to determine the total power deficit the wind farm needs to supply. The lower layer uses a nonlinear model predictive control (NMPC) strategy with the discretized rotor motion equation as the prediction model and optimization under constraints to allocate the total power deficit to each turbine. MATLAB/Simulink case studies show that, compared with fixed-coefficient synthetic inertial control, the proposed framework raises the frequency nadir by 0.01–0.02 Hz, shortens the settling time by over 200 s under 2–4% load disturbances, and maintains rotor speed within the safe range. This work significantly enhances the wind farm’s frequency regulation performance, contributing to power system and energy sustainability. Full article
Show Figures

Figure 1

Back to TopTop