Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = innate-like T cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 427 KiB  
Review
The Role of Viral Infections in the Immunopathogenesis of Type 1 Diabetes Mellitus: A Narrative Review
by Ioanna Kotsiri, Maria Xanthi, Charalampia-Melangeli Domazinaki and Emmanouil Magiorkinis
Biology 2025, 14(8), 981; https://doi.org/10.3390/biology14080981 (registering DOI) - 2 Aug 2025
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections [...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections as potential environmental triggers in disease onset and progression. This narrative review synthesizes current findings on the role of viral pathogens in T1DM pathogenesis. Enteroviruses, especially Coxsackie B strains, are the most extensively studied and show strong epidemiological and mechanistic associations with beta-cell autoimmunity. Large prospective studies—including Diabetes Virus Detection (DiViD), The environmental determinans of diabetes in the young (TEDDY), Miljøfaktorer i utvikling av type 1 diabetes (MIDIA), and Diabetes Autoimmunity Study in the Young (DAISY)—consistently demonstrate correlations between enteroviral presence and the initiation or acceleration of islet autoimmunity. Other viruses—such as mumps, rubella, rotavirus, influenza A (H1N1), and SARS-CoV-2—have been investigated for their potential involvement through direct cytotoxic effects, immune activation, or molecular mimicry. Interestingly, certain viruses like varicella-zoster virus (VZV) and cytomegalovirus (CMV) may exert modulatory or even protective influences on disease progression. Proposed mechanisms include direct beta-cell infection, molecular mimicry, bystander immune activation, and dysregulation of innate and adaptive immunity. Although definitive causality remains unconfirmed, the complex interplay between genetic predisposition, immune responses, and viral exposure underscores the need for further mechanistic research. Elucidating these pathways may inform future strategies for targeted prevention, early detection, and vaccine or antiviral development in at-risk populations. Full article
Show Figures

Figure 1

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 522
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

73 pages, 19750 KiB  
Article
Transcriptomic Profiling of the Immune Response in Orthotopic Pancreatic Tumours Exposed to Combined Boiling Histotripsy and Oncolytic Reovirus Treatment
by Petros Mouratidis, Ricardo C. Ferreira, Selvakumar Anbalagan, Ritika Chauhan, Ian Rivens and Gail ter Haar
Pharmaceutics 2025, 17(8), 949; https://doi.org/10.3390/pharmaceutics17080949 - 22 Jul 2025
Viewed by 286
Abstract
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune [...] Read more.
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune transcriptome of these tumours were characterised. Methods: Orthotopic syngeneic murine pancreatic KPC tumours grown in immune-competent subjects, were allocated to control, reovirus, BH and combined BH and reovirus treatment groups. Acoustic cavitation was monitored using a passive broadband cavitation sensor. Treatment effects were assessed histologically with hematoxylin and eosin staining. Single-cell multi-omics combining whole-transcriptome analysis with the expression of surface-expressed immune proteins was used to assess the effects of treatments on tumoural leukocytes. Results: Acoustic cavitation was detected in all subjects exposed to BH, causing cellular disruption in tumours 6 h after treatment. Distinct cell clusters were identified in the pancreatic tumours 24 h post-treatment. These included neutrophils and cytotoxic T cells overexpressing genes associated with an N2-like and an exhaustion phenotype, respectively. Reovirus decreased macrophages, and BH decreased regulatory T cells compared to controls. The combined treatments increased neutrophils and the ratio of various immune cells to Treg. All treatments overexpressed genes associated with an innate immune response, while ultrasound treatments downregulated genes associated with the transporter associated with antigen processing (TAP) complex. Conclusions: Our results show that the combined BH and reovirus treatments maximise the overexpression of genes associated with the innate immune response compared to that seen with each individual treatment, and illustrate the anti-immune phenotype of key immune cells in the pancreatic tumour microenvironment. Full article
Show Figures

Figure 1

17 pages, 1764 KiB  
Review
The Role of Cutibacterium acnes in the Etiopathogenesis of Sarcoidosis: Current Insights and Future Study Directions
by Angela Maria Di Francesco, Giuliana Pasciuto, Elena Verrecchia, Ludovico Luca Sicignano, Laura Gerardino, Donato Rigante and Raffaele Manna
Int. J. Mol. Sci. 2025, 26(14), 6652; https://doi.org/10.3390/ijms26146652 - 11 Jul 2025
Viewed by 287
Abstract
Cutibacterium acnes (C. acnes) is a commensal bacterium of the skin microbiota that can transform itself into a pathogen depending on the peculiar susceptibility of the host: it is the sole microorganism so far to be found in the specific organ [...] Read more.
Cutibacterium acnes (C. acnes) is a commensal bacterium of the skin microbiota that can transform itself into a pathogen depending on the peculiar susceptibility of the host: it is the sole microorganism so far to be found in the specific organ lesions of sarcoidosis, and C. acnes-induced activation of T-helper-type-1 cell responses is generally higher in patients with sarcoidosis than in healthy subjects. This bacterium acts as an opportunistic agent in several inflammatory conditions other than sarcoidosis, such as prostate cancer and prosthetic joint infections. Both innate and adaptive immunity systems are involved in the pathogenesis of C. acnes-mediated sarcoid lesions, and a seminal role is played by host toll-like receptor (TLR)-2, TLR-4, TLR-6, NOD-like receptors, and mononuclear cell cytoplasmic receptors. This review summarizes current knowledge on the potential cause–effect relationship existing between C. acnes and sarcoidosis, addressing issues of future research directions and novel therapeutic strategies in the management of a complex disease such as sarcoidosis. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 1445 KiB  
Review
Understanding the Immune System’s Intricate Balance: Activation, Tolerance, and Self-Protection
by Jui-Yun Chen, Li-Jane Shih, Min-Tser Liao, Kuo-Wang Tsai, Kuo-Cheng Lu and Wan-Chung Hu
Int. J. Mol. Sci. 2025, 26(12), 5503; https://doi.org/10.3390/ijms26125503 - 8 Jun 2025
Viewed by 821
Abstract
Understanding the mechanisms of immune activation and deactivation is paramount. A host must initiate effective immunity against pathogenic infections while avoiding triggering immunity against self-antigens, which can lead to detrimental autoimmune disorders. Host immunological pathways can be categorized as Immunoglobulin (Ig)G-dominant eradicable immune [...] Read more.
Understanding the mechanisms of immune activation and deactivation is paramount. A host must initiate effective immunity against pathogenic infections while avoiding triggering immunity against self-antigens, which can lead to detrimental autoimmune disorders. Host immunological pathways can be categorized as Immunoglobulin (Ig)G-dominant eradicable immune reactions and IgA-dominant tolerable immune reactions. Eradicable immune reactions include Th1, Th2, Th22, and Thαβ immune responses against four different types of pathogens. Tolerable immune reactions include Th1-like, Th9, Th17, and Th3 immune responses against four different types of pathogens. Here, we try to determine the mechanisms of activation and deactivation of host immune reactions. The spleen and liver play contrasting roles in mediating immune responses: the spleen is primarily involved in immune activation, whereas the liver is responsible for immune deactivation. Similarly, the sympathetic and parasympathetic nervous systems have opposing functions in immune modulation, with the sympathetic system promoting pro-inflammatory responses and the parasympathetic system facilitating anti-inflammatory processes. Furthermore, adrenocorticotropic hormone (ACTH) and glucocorticosteroids exhibit contrasting effects on immune regulation: ACTH is involved in activating adaptive immunity while inhibiting innate immunity, whereas glucocorticosteroids activate natural IgM antibody associated with innate immunity while inhibiting adaptive immunity. Heat shock proteins, particularly molecular chaperones induced by fever, play pivotal roles in immune activation. Conversely, IgD B cells and gamma/delta T cells contribute to immune deactivation through mechanisms such as clonal anergy. Understanding these mechanisms provides insights into immunological pathways, aiding in the better management of infectious diseases and autoimmune disorders. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Diseases)
Show Figures

Figure 1

28 pages, 1932 KiB  
Review
Power of Memory: A Natural Killer Cell Perspective
by Oishi Sinha, SK Abhipsha and Sumit Sen Santara
Cells 2025, 14(11), 846; https://doi.org/10.3390/cells14110846 - 5 Jun 2025
Viewed by 1511
Abstract
Memory is an incredible aspect of our immune system. Similarly to our cognitive memory, it allows us to remember and respond more efficiently to subsequent encounters with the same pathogens, making it possible to act on the information built by previous experiences. This [...] Read more.
Memory is an incredible aspect of our immune system. Similarly to our cognitive memory, it allows us to remember and respond more efficiently to subsequent encounters with the same pathogens, making it possible to act on the information built by previous experiences. This process is critical for the body’s defenses against infections and is the cornerstone for the effectiveness of vaccines. Immunological memory, traditionally considered an exclusive quality of the adaptive immune system, is a sophisticated component of the immune response system that is characterized by the ability to recognize and remember specific pathogens. This form of memory is primarily observed in antigen-specific T and B cells, which are specialized for recognizing particular antigens and generating a quicker immune response upon each successive reinfection over a long period of time. Natural killer (NK) cells, essential as the body’s first line of defense against a wide range of viral infections and tumors, have traditionally been classified as a key component of the innate immune system, characterized by their lack of antigen specificity and memory. However, the concept of innate vs. adaptive has been evolving, with increasing evidence suggesting that specific cellular subsets of the innate immune system may also play a role in immunological memory. This review aims to provide a comprehensive overview of the recent advances in the understandings of the molecular mechanisms driving the development of memory-like properties in NK cells, with a primary focus on human data in the context of various diseases and infectious conditions. Additionally, we will examine the therapeutic implications of these findings, highlighting how insights into NK cell memory can contribute to the development of novel immunotherapies and improve strategies for treating infections, cancer, and autoimmune disorders. Full article
Show Figures

Figure 1

16 pages, 716 KiB  
Review
Unconventional T Cells’ Role in Cancer: Unlocking Their Hidden Potential to Guide Tumor Immunity and Therapy
by Paola Pinco and Federica Facciotti
Cells 2025, 14(10), 720; https://doi.org/10.3390/cells14100720 - 15 May 2025
Viewed by 1129
Abstract
Unconventional T (UC T) cells, including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and double-negative (DN) T cells, are key players in immune surveillance and response due to their properties combining innate-like and adaptive-like features. These [...] Read more.
Unconventional T (UC T) cells, including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and double-negative (DN) T cells, are key players in immune surveillance and response due to their properties combining innate-like and adaptive-like features. These cells are widely present in mucosal tissues, where they can rapidly respond to infections and tumor-associated changes. In fact, UC T cells can have both pro- and anti-tumoral effects, with their activity influenced by factors such as microbial composition and the tumor microenvironment. In particular, intratumoral microbiota significantly impacts the development, function, and activation of UC T cells, influencing cytokine production and shaping the immune response in various cancers. The complex crosstalk between UC T cells and the surrounding factors is discussed in this review, with a focus on how these cells might be interesting candidates to explore and exploit as anticancer therapeutic agents. However, the great potential of UC T cells, not only demonstrated in the context of adoptive cell transfer, but also enhanced through techniques of engineering, is still flanked by different challenges, like the immunosuppressive tumor microenvironment and heterogeneity of target molecules associated with some specific categories of tumors, like gastrointestinal cancers. Full article
Show Figures

Figure 1

36 pages, 885 KiB  
Review
The Epithelial Immune Response to Human Papillomavirus Infection
by Shyantani Roy-Biswas and Merilyn Hibma
Pathogens 2025, 14(5), 464; https://doi.org/10.3390/pathogens14050464 - 9 May 2025
Cited by 1 | Viewed by 2073
Abstract
The skin is a complex organ, containing an intricate network of immune cells that are crucial for host barrier function and defence against pathogens. Human papillomavirus (HPV) exclusively infects the skin, and its lifecycle is intimately associated with epithelial cell division and differentiation. [...] Read more.
The skin is a complex organ, containing an intricate network of immune cells that are crucial for host barrier function and defence against pathogens. Human papillomavirus (HPV) exclusively infects the skin, and its lifecycle is intimately associated with epithelial cell division and differentiation. There are over 450 HPV types, 12 of which are classified as carcinogenic. The primary focus of this review is the epithelial immune response to HPV infection of the cervix during the initial stages of infection, productive infection, and disease progression. During the early stages of infection, cells are HPV-positive; however, there are no attributable histological changes to the epithelium. The HPV-infected cells have the capacity for innate sensing and signalling through toll-like receptors in response to viral nucleic acids. However, HPV has evolved multiple mechanisms to evade the innate response. During productive infection, all viral antigens are expressed and there are visible histological changes to the epithelium, including koilocytosis. Disease regression is associated with Tbet positive cells in the infected epithelium and the presence of CD4 and CD8 T cells in the lamina propria. Disease progression is associated with the overexpression of the E6 and E7 oncoproteins after integration of viral genomes into the host chromosomal DNA. Histologically, the epithelium is less differentiated, and changes to cells include a higher nuclear-to-cytoplasmic ratio and an increased mitotic index. Immune changes associated with disease progression include increased numbers of cells expressing suppressor molecules, such as FoxP3, Blimp-1, and HMGB1, and myeloid cell infiltrates with an M2-like phenotype. This review highlights the gaps in the understanding of the immune response in HPV-positive cervical neoplasia, and in regression and progression of disease. This knowledge is critical for the development of effective immunotherapies that reliably cause HPV-positive cervical neoplasia to regress. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 4245 KiB  
Article
JEG-3 Trophoblast Cells Influence ILC-like Transformation of NK Cells In Vitro
by Valentina Mikhailova, Polina Grebenkina, Sergey Selkov and Dmitry Sokolov
Int. J. Mol. Sci. 2025, 26(8), 3687; https://doi.org/10.3390/ijms26083687 - 14 Apr 2025
Viewed by 639
Abstract
The uterine decidua contains NK cells differing in their characteristics from classical NK cells, as well as other populations of innate lymphoid cells (ILCs). ILC differentiation depends on the active transcription factors: ILC1 is characterized by T-bet expression, ILC2 is defined by RORα [...] Read more.
The uterine decidua contains NK cells differing in their characteristics from classical NK cells, as well as other populations of innate lymphoid cells (ILCs). ILC differentiation depends on the active transcription factors: ILC1 is characterized by T-bet expression, ILC2 is defined by RORα and GATA3, ILC3 expresses RORγt and AhR. We analyzed in vitro the expression of transcription factors by NK cells in the presence of trophoblast cells and cytokines and changes in NK cell cytotoxic activity. We used NK-92 and JEG-3 cell lines, which we cocultured in the presence of IFNγ, IL-10, IL-15, and TGFβ. Then, cells were treated with antibodies to AhR, Eomes, GATA-3, RORα, RORγt, and T-bet and were analyzed. We determined NK cell cytotoxicity towards K562 cells. To characterize the functional state of trophoblast cells, we estimated their secretion of TGFβ and βhCG. We showed that in the presence of trophoblasts, the expression of the classical NK cell transcription factors—Eomes, T-bet, as well as RORα, regulating ILC2 differentiation, and AhR, participating in NCR+ ILC3 formation—decreased in NK cells. RORγt expression typical for NCR- ILC3 remained unchanged. IFNγ inhibited AhR expression. IL-10 stimulated an increase in the number of T-bet+ ILC1-like cells. Both IL-10 and IFNγ suppressed RORα expression by NK cells and stimulated TGFβ secretion by trophoblasts. After coculture with trophoblast cells, NK cells reduced their cytotoxicity. These results indicated trophoblast cell influence on the acquisition of ILC1 and ILC3 characteristics by NK cells. Full article
Show Figures

Graphical abstract

21 pages, 762 KiB  
Review
Beyond Adaptive Immunity: Trained Innate Immune Responses as a Novel Frontier in Hepatocellular Carcinoma Therapy
by Ching-Hua Hsieh, Pei-Chin Chuang and Yueh-Wei Liu
Cancers 2025, 17(7), 1250; https://doi.org/10.3390/cancers17071250 - 7 Apr 2025
Viewed by 1311
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally, with the majority of cases detected at advanced stages when curative options are limited. Current systemic therapies, including immune checkpoint inhibitors, demonstrate limited efficacy with durable responses in only 15–20% of patients. [...] Read more.
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally, with the majority of cases detected at advanced stages when curative options are limited. Current systemic therapies, including immune checkpoint inhibitors, demonstrate limited efficacy with durable responses in only 15–20% of patients. This poor response is largely attributed to HCC’s immunosuppressive microenvironment, which blunts effective T-cell responses. By illustrating that innate immune cells can acquire memory-like characteristics through a process known as trained immunity, recent evidence has challenged the conventional belief that innate immunity is devoid of memory. This review investigates the potential of trained immunity, which is defined by the long-term functional reprogramming of innate immune cells through epigenetic, transcriptomic, and metabolic changes, to provide new therapeutic opportunities for HCC. We discuss mechanisms by which trained immunity can transform the HCC microenvironment, including enhanced inflammatory cytokine production, repolarization of tumor-associated macrophages toward anti-tumor phenotypes, increased immune cell infiltration, and improved bridging to adaptive immunity. We further evaluate emerging therapeutic strategies leveraging trained immunity principles, including BCG vaccination, β-glucan administration, cytokine-trained NK cell therapy, and innovative combination approaches. Finally, we address potential resistance mechanisms and future directions for clinical application. By integrating trained immunity into conventional immunotherapeutic regimens, we may significantly improve outcomes for HCC patients, potentially transforming advanced disease into a more manageable condition. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

13 pages, 794 KiB  
Review
HIV-Associated Dermatological Alterations: Barrier Dysfunction, Immune Impairment, and Microbiome Changes
by Muhammad Anshory, Handono Kalim, Jan L. Nouwen and Hok Bing Thio
Int. J. Mol. Sci. 2025, 26(7), 3199; https://doi.org/10.3390/ijms26073199 - 30 Mar 2025
Viewed by 958
Abstract
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play [...] Read more.
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play a role in immune modulation but are affected by HIV-related disruptions. Innate and adaptive immune systems are compromised due to CD4+ T-cell depletion, cytokine imbalances, and altered immune regulation, leading to conditions such as hypersensitivity and inflammatory dermatoses. The skin microbiome in HIV patients shows distinct shifts, including reduced Cutibacterium species and increased opportunistic microbes, independent of CD4+ levels. Age, sex, and environmental stressors exacerbate these changes, with women exhibiting stronger immune responses but higher risks of autoimmune diseases and aging men experiencing accelerated immunosenescence. Understanding these interconnected alterations is essential for developing targeted therapies to manage skin complications and improve the overall health of HIV patients. Full article
(This article belongs to the Special Issue Viral Infections and Immune Responses)
Show Figures

Figure 1

15 pages, 2350 KiB  
Review
The Role of CXCL4 in Systemic Sclerosis: DAMP, Auto-Antigen and Biomarker
by Silvia Porreca, Anna Mennella and Loredana Frasca
Int. J. Mol. Sci. 2025, 26(6), 2421; https://doi.org/10.3390/ijms26062421 - 7 Mar 2025
Cited by 1 | Viewed by 1438
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by specific autoantibodies, vasculopathy and fibrosis of the skin and internal organs. In SSc, chronic activation of the immune system is largely sustained by endogenous inflammatory mediators that act as damage-associated molecular patterns (DAMPs), which [...] Read more.
Systemic sclerosis (SSc) is an autoimmune disease characterized by specific autoantibodies, vasculopathy and fibrosis of the skin and internal organs. In SSc, chronic activation of the immune system is largely sustained by endogenous inflammatory mediators that act as damage-associated molecular patterns (DAMPs), which activate Toll-like receptors (TLRs). Major autoantigens are nucleic acids or molecules that are able to bind nucleic acids. It is important to identify solid and predictive biomarkers of both disease activity and disease subtype. CXCL4 has been regarded as a new biomarker for early SSc in recent years, and here, we discuss its modulation over the course of a disease and after pharmacological interventions. Moreover, we provide evidence that CXCL4, in addition to being a biomarker of SSc subtypes and a prognostic marker of disease severity, has a dual pathogenic role in SSc: on the one hand, in complex with self-nucleic acids, CXCL4 acts as a DAMP for IFN-I and pro-inflammatory cytokines’ release by innate immune cells (such as dendritic cells); on the other hand, CXCL4 is a target of both antibodies and T cells, functioning as an autoantigen. CXCL4 is certainly an interesting molecule in inflammation and autoimmunity, not only in SSc, and it may also be considered as a therapy target. Full article
Show Figures

Figure 1

19 pages, 2176 KiB  
Article
Evaluating the Immunogenicity of an Intranasal Microparticle Combination Vaccine for COVID-19 and Influenza
by Sharon Vijayanand, Smital Patil, Priyal Bagwe, Revanth Singh, Emmanuel Adediran and Martin J. D’Souza
Vaccines 2025, 13(3), 282; https://doi.org/10.3390/vaccines13030282 - 7 Mar 2025
Cited by 2 | Viewed by 1249
Abstract
Background: Infectious respiratory pathogens like SARS-CoV-2 and influenza frequently mutate, leading to the emergence of variants. This necessitates continuous updates to FDA-approved vaccines with booster shots targeting the circulating variants. Vaccine hesitancy and needle injections create inconvenience and contribute to reduced global vaccination [...] Read more.
Background: Infectious respiratory pathogens like SARS-CoV-2 and influenza frequently mutate, leading to the emergence of variants. This necessitates continuous updates to FDA-approved vaccines with booster shots targeting the circulating variants. Vaccine hesitancy and needle injections create inconvenience and contribute to reduced global vaccination rates. To address the burden of frequent painful injections, this manuscript explores the potential of non-invasive intranasal (IN) vaccine administration as an effective alternative to intramuscular (IM) shots. Further, as a proof-of-concept, an inactivated combination vaccine for COVID-19 and influenza was tested to eliminate the need for separate vaccinations. Methods: The methods involved encapsulating antigens and adjuvants in poly(lactic-co-glycolic acid) (PLGA) polymer matrices, achieving over 85% entrapment. The vaccine was evaluated in vitro for cytotoxicity and immunogenicity before being administered to 6–8-week-old Swiss Webster mice at weeks 0, 3, and 6. The mice were then assessed for antibody levels and cellular responses. Results: The intranasal microparticle (IN-MP) vaccine induced an innate immune response, autophagy, and were non-cytotoxic in vitro. In vivo, the vaccine led to high levels of virus-specific serum IgM, IgG, and IgA binding antibodies, as well as elevated IgG and IgA levels in the lung wash samples. The antibodies generated demonstrated neutralizing activity against the SARS-CoV-2 pseudovirus. Furthermore, the IN-MP vaccine prompted increased antigen-specific CD4+ and CD8+ T-cell responses in the vaccinated mice. Conclusions: The IN-MP combination vaccine produced immune responses comparable to or higher than the IM route, indicating its potential as an alternative to IM injections. Full article
(This article belongs to the Special Issue Innovating Vaccine Research in Mucosal Vaccines)
Show Figures

Figure 1

29 pages, 1957 KiB  
Review
Unraveling the Dynamics of Human Filarial Infections: Immunological Responses, Host Manifestations, and Pathogen Biology
by Anuradha Rajamanickam and Subash Babu
Pathogens 2025, 14(3), 223; https://doi.org/10.3390/pathogens14030223 - 25 Feb 2025
Cited by 3 | Viewed by 2612
Abstract
Lymphatic filariasis (LF), or elephantiasis, is a neglected tropical disease caused by filarial worms, primarily Wuchereria bancrofti, transmitted through mosquito bites. It often begins in childhood but may not show symptoms until later, leaving many individuals asymptomatic for long periods. LF disrupts [...] Read more.
Lymphatic filariasis (LF), or elephantiasis, is a neglected tropical disease caused by filarial worms, primarily Wuchereria bancrofti, transmitted through mosquito bites. It often begins in childhood but may not show symptoms until later, leaving many individuals asymptomatic for long periods. LF disrupts the lymphatic system, causing severe swelling in the limbs and genitals, leading to deformities and disabilities. The World Health Organization estimates that around 51 million people are affected globally, with 36 million suffering from chronic conditions like lymphedema and hydrocele. In 2021, approximately 882.5 million people in 44 countries required preventive chemotherapy, making LF the second leading parasitic cause of disability, significantly impacting socioeconomic status. The immune response to filarial parasites is complex, involving both innate and adaptive immune cells. A key feature of LF immunology is the antigen-specific Th2 response, expansion of IL-10-producing CD4+ T cells, and a muted Th1 response. This T cell hypo-responsiveness is crucial for sustaining long-term infections with high parasite densities. While the correlates of protective immunity are not fully understood—due in part to a lack of suitable animal models—T cells, particularly CD4+ Th2 cells, and B cells, play essential roles in immune protection. Moreover, host immune responses contribute to the disease’s pathological manifestations. A failure to induce T cell hypo-responsiveness can lead to exaggerated inflammatory conditions such as lymphedema, hydrocele, and elephantiasis. Filarial infections also induce bystander effects on various immune responses, impacting responses to other infectious agents. This intricate immune interplay offers valuable insights into the regulation of immune responses to chronic infections. This review explores recent immunological research on lymphatic filarial worms, highlighting their effects on both innate and adaptive immune responses in humans and the mechanisms underlying this neglected tropical disease. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

30 pages, 2827 KiB  
Review
APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction
by Sharee Leong, Hesham Nasser and Terumasa Ikeda
Int. J. Mol. Sci. 2025, 26(4), 1561; https://doi.org/10.3390/ijms26041561 - 12 Feb 2025
Viewed by 1770
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family’s restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil [...] Read more.
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family’s restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections. Full article
(This article belongs to the Special Issue Molecular Research on Human Retrovirus Infection: 2nd Edition)
Show Figures

Figure 1

Back to TopTop