Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = induced sheath voltages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2485 KiB  
Article
The Hexokinase 1 5′-UTR Mutation in Charcot–Marie–Tooth 4G Disease Alters Hexokinase 1 Binding to Voltage-Dependent Anion Channel-1 and Leads to Dysfunctional Mitochondrial Calcium Buffering
by Maria Ceprian, Raul Juntas-Morales, Graham Campbell, Ulrike Walther-Louvier, François Rivier, William Camu, Florence Esselin, Andoni Echaniz-Laguna, Tanya Stojkovic, Françoise Bouhour, Philippe Latour and Nicolas Tricaud
Int. J. Mol. Sci. 2024, 25(8), 4364; https://doi.org/10.3390/ijms25084364 - 15 Apr 2024
Viewed by 1905
Abstract
Demyelinating Charcot–Marie–Tooth 4G (CMT4G) results from a recessive mutation in the 5′UTR region of the Hexokinase 1 (HK1) gene. HK participates in mitochondrial calcium homeostasis by binding to the Voltage-Dependent Anion Channel (VDAC), through its N-terminal porin-binding domain. Our hypothesis is that CMT4G [...] Read more.
Demyelinating Charcot–Marie–Tooth 4G (CMT4G) results from a recessive mutation in the 5′UTR region of the Hexokinase 1 (HK1) gene. HK participates in mitochondrial calcium homeostasis by binding to the Voltage-Dependent Anion Channel (VDAC), through its N-terminal porin-binding domain. Our hypothesis is that CMT4G mutation results in a broken interaction between mutant HK1 and VDAC, disturbing mitochondrial calcium homeostasis. We studied a cohort of 25 CMT4G patients recruited in the French gypsy population. The disease was characterized by a childhood onset, an intermediate demyelinating pattern, and a significant phenotype leading to becoming wheelchair-bound by the fifth decade of life. Co-IP and PLA studies indicated a strong decreased interaction between VDAC and HK1 in the patients' PBMCs and sural nerve. We observed that either wild-type HK1 expression or a peptide comprising the 15 aa of the N-terminal wild-type HK1 administration decreased mitochondrial calcium release in HEK293 cells. However, mutated CMT4G HK1 or the 15 aa of the mutated HK1 was unable to block mitochondrial calcium release. Taken together, these data show that the CMT4G-induced modification of the HK1 N-terminus disrupts HK1-VDAC interaction. This alters mitochondrial calcium buffering that has been shown to be critical for myelin sheath maintenance. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 5933 KiB  
Article
Analysis of Increased Induced Voltages on the Sheath of Double-Circuit Underground Transmission Lines Guaranteeing Ampacity
by Jesus Enrique Guevara Asorza, Jaimis Sajid Leon Colqui, Sérgio Kurokawa and José Pissolato Filho
Energies 2024, 17(7), 1637; https://doi.org/10.3390/en17071637 - 29 Mar 2024
Cited by 4 | Viewed by 2406
Abstract
This paper quantifies and discusses the increase in induced voltage on a sheath due to changes in duct banks in terms of type and dimensions along an underground transmission line, guaranteeing the ampacity required for a project. The four most common duct banks [...] Read more.
This paper quantifies and discusses the increase in induced voltage on a sheath due to changes in duct banks in terms of type and dimensions along an underground transmission line, guaranteeing the ampacity required for a project. The four most common duct banks in double-circuit underground transmission lines with phase transposition were considered in this study, along with two special cross-bonding techniques: continuous cross-bonding (CCB) and sectionalized cross-bonding (SCB). These techniques aim to reduce sheath currents and enhance the distribution of the induced voltage on the sheath. The analysis considers two distinct scenarios in which the profile of the induced voltage is calculated: the first one accounts for underground obstructions, intersections with important traffic avenues, and ground with high excavation costs that force changes in the duct bank dimensions and configuration, which is the most exact and realistic case. The second one solely considers one typical configuration of a duct bank along the route. This last scenario is normally applied to calculate the induced voltage when an underground transmission design is required. The results show that when installing cables at a greater depth, it is imperative to increase the distance between them to guarantee the ampacity. The induced voltage on the sheath will rise as the distance increases. Furthermore, the results reveal that instead of calculating the induced voltage by considering the scenario that is exact and most like a real case, it is enough to calculate following the second scenario and then add a scaling factor according to each duct bank configuration. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 2520 KiB  
Article
Comparison of Methods for Suppressing Circulating Current in Metal Sheath of Cables Connected in Parallel
by Rui Wu, Weilin Zou, Jie Yuan, Hua Bao, Shuaijie Wang, Yufeng Liu and Wentao Yang
Energies 2023, 16(11), 4265; https://doi.org/10.3390/en16114265 - 23 May 2023
Cited by 5 | Viewed by 2331
Abstract
The number of high-voltage parallel cables is rapidly increasing. The alternating magnetic field generated by the working current of power cable cores induces voltage in the adjacent metal sheath; if the sheath and earth form a circuit, the metal sheath will create a [...] Read more.
The number of high-voltage parallel cables is rapidly increasing. The alternating magnetic field generated by the working current of power cable cores induces voltage in the adjacent metal sheath; if the sheath and earth form a circuit, the metal sheath will create a circulating current, resulting in a reduction in the load capacity of power cable and the life of cable insulation. This paper uses MATLAB to construct a model for calculating the circulating current of cables connected in parallel in the same phase, and the effects of cable arrangement, phase sequence, and loop distance of cables connected in parallel on the sheath circulating current are investigated. The induced voltage in power cable sheaths is decomposed into two components, i.e., the component resulting from the core current and the component resulting from the metal sheath. Two new sheath connection methods are proposed to suppress the sheath circulating current. Compared with traditional cross-connection grounding, the proposed methods can reduce the coupling degree between loops, thus decreasing the induced voltage and circulating current. The different grounding methods of the sheath are modeled in the environment of an electromagnetic transient program (EMTP), and the sheath circulating current is simulated and compared with the conventional cross-connection grounding method. In the asymmetric arrangement, the proposed series connection method can reduce the sheath circulating current by at least 50%; however, its increases the sheath circulating current in the symmetric arrangement. Full article
Show Figures

Figure 1

16 pages, 8639 KiB  
Article
Study on Induced Voltage and Circulation Current of Metal Layer in Single-Core Cable of High-Speed Railway Power Transmission Line
by Hao Wang and Zhensheng Wu
Energies 2022, 15(14), 5010; https://doi.org/10.3390/en15145010 - 8 Jul 2022
Cited by 9 | Viewed by 3866
Abstract
The metal shield and metal armor layers of single-core cables on high-speed railroad power penetration lines are usually grounded by common equipment protectors. This grounding method brings a continuous circulating current between the metal shield and metal armor layer compared to the subequipment [...] Read more.
The metal shield and metal armor layers of single-core cables on high-speed railroad power penetration lines are usually grounded by common equipment protectors. This grounding method brings a continuous circulating current between the metal shield and metal armor layer compared to the subequipment protection grounding. In order to quantitatively study the circulating current condition of the through line and its influence on the reliability of the railroad power through line, the induced electric potential and circulating current generation mechanism of the single-core cable of the through line and its influencing factors were firstly analyzed in depth. Then, based on the cross-sectional structure of the single-core cable and the location of the traction network and cable in the roadbed section, a traction power supply model was established and simulated for the interlayer-induced potentials and circulating currents due to the two grounding protection methods under no load, single train operation, and heavy load four-train operation of the line. Finally, three actual sections of the Shanghai–Kunming and Nan–Kunming high-speed railroads in China were selected to collect and analyze the loop flow data with no load and with vehicles passing through, and finally the loop flow law of single-core cable for railroad electric through traffic was derived. The analysis shows that when the metal sheath of a single-core cable is grounded by ordinary equipment, the circulating current generated does not exceed 1% of the core current, which meets the relevant safety standards, but the induced voltage in the case of large loads will exceed 50 V safety voltage. Full article
(This article belongs to the Special Issue Studies in the Energy Efficiency and Power Supply for Railway Systems)
Show Figures

Figure 1

19 pages, 13272 KiB  
Article
Incomplete Cross-Bonding in the MV Line. Experience from the Operation of MV Single Cable Lines
by Krzysztof Dobrzynski, Zbigniew Lubosny, Jacek Klucznik, Janusz Grala and Dominik Falkowski
Energies 2020, 13(20), 5292; https://doi.org/10.3390/en13205292 - 12 Oct 2020
Cited by 2 | Viewed by 2314
Abstract
Cable lines are one of the basic components of power systems. Medium and high voltage cables mainly comprise a metallic sheath, which is concentric to the main core conductor. There are several operating schemes of such cable lines, which differ in the place [...] Read more.
Cable lines are one of the basic components of power systems. Medium and high voltage cables mainly comprise a metallic sheath, which is concentric to the main core conductor. There are several operating schemes of such cable lines, which differ in the place of earthing of sheaths and the possible use of the sheaths and/or conductors crossing. The sheaths cross-bonding is typically done in two places of one cable line section, and it allows to reduce power losses. Nevertheless, the use of incomplete sheaths crossing—only in one place on cable route may have economic justification. The paper presents an incomplete sheaths cross-bonding analysis of an existing medium voltage cable line. The results obtained by the mathematical model are validated by measurements taken on 30 October 2019 on an existing cable line. Measurements recorded on a real object for various systems of crossing sheaths are presented. The influence of incorrect sheaths crossing on the measured quantities was shown. In addition, the risk of excess voltage on the sheaths during short-circuits has been verified using a mathematical model. Full article
(This article belongs to the Special Issue Electric Distribution System Modeling and Analysis)
Show Figures

Graphical abstract

16 pages, 2546 KiB  
Article
Safety Issues Referred to Induced Sheath Voltages in High-Voltage Power Cables—Case Study
by Stanislaw Czapp and Krzysztof Dobrzynski
Appl. Sci. 2020, 10(19), 6706; https://doi.org/10.3390/app10196706 - 25 Sep 2020
Cited by 11 | Viewed by 6645
Abstract
Load currents and short-circuit currents in high-voltage power cable lines are sources of the induced voltages in the power cables’ concentric metallic sheaths. When power cables operate with single-point bonding, which is the simplest bonding arrangement, these induced voltages may introduce an electric [...] Read more.
Load currents and short-circuit currents in high-voltage power cable lines are sources of the induced voltages in the power cables’ concentric metallic sheaths. When power cables operate with single-point bonding, which is the simplest bonding arrangement, these induced voltages may introduce an electric shock hazard or may lead to damage of the cables’ outer non-metallic sheaths at the unearthed end of the power cable line. To avoid these aforementioned hazards, both-ends bonding of metallic sheaths is implemented but, unfortunately, it leads to increased power losses in the power cable line, due to the currents circulating through the sheaths. A remedy for the circulating currents is cross bonding—the most advanced bonding solution. Each solution has advantages and disadvantages. In practice, the decision referred to its selection should be preceded by a wide analysis. This paper presents a case study of the induced sheath voltages in a specific 110 kV power cable line. This power cable line is a specific one, due to the relatively low level of transferred power, much lower than the one resulting from the current-carrying capacity of the cables. In such a line, the induced voltages in normal operating conditions are on a very low level. Thus, no electric shock hazard exists and for this reason, the simplest arrangement—single-point bonding—was initially recommended at the project stage. However, a more advanced computer-based investigation has shown that in the case of the short-circuit conditions, induced voltages for this arrangement are at an unacceptably high level and risk of the outer non-metallic sheaths damage occurs. Moreover, the induced voltages during short circuits are unacceptable in some sections of the cable line even for both-ends bonding and cross bonding. The computer simulations enable to propose a simple practical solution for limiting these voltages. Recommended configurations of this power cable line—from the point of view of the induced sheath voltages and power losses—are indicated. Full article
(This article belongs to the Special Issue Electrical Safety Engineering of Complex Systems)
Show Figures

Figure 1

19 pages, 9637 KiB  
Article
Passive Magnetic-Flux-Concentrator Based Electromagnetic Targeting System for Endobronchoscopy
by Chin-Chung Chen, Ching-Kai Lin, Chen-Wei Chang, Yun-Chien Cheng, Jia-En Chen, Sung-Lin Tsai and Tien-Kan Chung
Sensors 2019, 19(23), 5105; https://doi.org/10.3390/s19235105 - 21 Nov 2019
Cited by 3 | Viewed by 4330
Abstract
In this paper, we demonstrate an innovative electromagnetic targeting system utilizing a passive magnetic-flux-concentrator for tracking endobronchoscope used in the diagnosis process of lung cancer tumors/lesions. The system consists of a magnetic-flux emitting coil, a magnetic-flux receiving electromagnets-array, and high permeability silicon-steel sheets [...] Read more.
In this paper, we demonstrate an innovative electromagnetic targeting system utilizing a passive magnetic-flux-concentrator for tracking endobronchoscope used in the diagnosis process of lung cancer tumors/lesions. The system consists of a magnetic-flux emitting coil, a magnetic-flux receiving electromagnets-array, and high permeability silicon-steel sheets rolled as a collar (as the passive magnetic-flux-concentrator) fixed in a guide sheath of an endobronchoscope. The emitting coil is used to produce AC magnetic-flux, which is consequently received by the receiving electromagnets-array. Due to the electromagnetic-induction, a voltage is induced in the receiving electromagnets-array. When the endobronchoscope’s guide sheath (with the silicon-steel collar) travels between the emitting coil and the receiving electromagnets-arrays, the magnetic flux is concentrated by the silicon-steel collar and thereby the induced voltage is changed. Through analyzing the voltage–pattern change, the location of the silicon–steel collar with the guide sheath is targeted. For testing, a bronchial-tree model for training medical doctors and operators is used to test our system. According to experimental results, the system is successfully verified to be able to target the endobronchoscope in the bronchial-tree model. The targeting errors on the x-, y- and z-axes are 9 mm, 10 mm, and 5 mm, respectively. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 24156 KiB  
Article
Accurate Evaluation of Steady-State Sheath Voltage and Current in HVDC Cable Using Electromagnetic Transient Simulation
by Mansoor Asif, Ho-Yun Lee, Kyu-Hoon Park and Bang-Wook Lee
Energies 2019, 12(21), 4161; https://doi.org/10.3390/en12214161 - 31 Oct 2019
Cited by 11 | Viewed by 4660
Abstract
The current and voltage in High Voltage DC (HVDC) line is not pure DC but contain superimposed ripple components. The current ripple in core of HVDC cable magnetically induces a voltage in the sheath, whereas the voltage ripple causes the flow of charging [...] Read more.
The current and voltage in High Voltage DC (HVDC) line is not pure DC but contain superimposed ripple components. The current ripple in core of HVDC cable magnetically induces a voltage in the sheath, whereas the voltage ripple causes the flow of charging current from core to sheath. The knowledge of sheath voltage is necessary to ensure compliance with the specification of utility companies. In this work, we have reported that the models available in commercial Electromagnetic Transient (EMT) simulation software erroneously introduce a DC bias in steady-state sheath voltage and sheath current. We have also demonstrated that by removing the DC bias accurate steady-state evaluation of sheath voltage and sheath current is possible. Additionally, we have analyzed the sheath voltage and currents in HVDC cable considering different cable lengths and sheath grounding schemes. It has been found that grounding the sheath at the terminal of HVDC cable can limit the sheath voltage to acceptable levels without causing substantial joule loss in the sheath. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 3951 KiB  
Article
Particle Simulation Model for Self-Field Magnetoplasmadynamic Thruster
by Jian Li, Yu Zhang, Jianjun Wu, Yuqiang Cheng and Xinru Du
Energies 2019, 12(8), 1579; https://doi.org/10.3390/en12081579 - 25 Apr 2019
Cited by 4 | Viewed by 3898
Abstract
In order to clarify the discharge principle of the self-field magnetoplasmadynamic thruster (MPDT), a two-dimensional axisymmetric particle-in-cell/Monte Carlo collision (PIC/MCC) model is proposed. The spatial distribution and the collision characteristics of discharge plasma were calculated using this model. In addition, the influence of [...] Read more.
In order to clarify the discharge principle of the self-field magnetoplasmadynamic thruster (MPDT), a two-dimensional axisymmetric particle-in-cell/Monte Carlo collision (PIC/MCC) model is proposed. The spatial distribution and the collision characteristics of discharge plasma were calculated using this model. In addition, the influence of the operation parameters on the plasma was analyzed including the voltage and mass flow rate. The effectiveness of the model was verified by comparison to the experimentally induced magnetic field. It was found that the electrons were mainly accelerated by the electric field in the cathode sheath and the electric field shielding effect of plasma was obvious in the bulk plasma region. Due to the pinch effect, the charged particles were constrained near the cathode. The results of the present work implied that the PIC/MCC model provides an approach to investigate the plasma distribution and a kinetic description of particles for the discharge of the self-field MPDT. Full article
Show Figures

Figure 1

Back to TopTop