Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = indolamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1908 KiB  
Article
Melatonin Improves Lipid Homeostasis, Mitochondrial Biogenesis, and Antioxidant Defenses in the Liver of Prediabetic Rats
by Milena Cremer de Souza, Maria Luisa Gonçalves Agneis, Karoliny Alves das Neves, Matheus Ribas de Almeida, Geórgia da Silva Feltran, Ellen Mayara Souza Cruz, João Paulo Ferreira Schoffen, Luiz Gustavo de Almeida Chuffa and Fábio Rodrigues Ferreira Seiva
Int. J. Mol. Sci. 2025, 26(10), 4652; https://doi.org/10.3390/ijms26104652 - 13 May 2025
Viewed by 799
Abstract
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic [...] Read more.
Type 2 diabetes mellitus represents a major global health burden and is often preceded by a prediabetic state characterized by insulin resistance and metabolic dysfunction. Mitochondrial alterations, oxidative stress, and disturbances in lipid metabolism are central to the prediabetes pathophysiology. Melatonin, a pleiotropic indolamine, is known to regulate metabolic and mitochondrial processes; however, its therapeutic potential in prediabetes remains poorly understood. This study investigated the effects of melatonin on energy metabolism, oxidative stress, and mitochondrial function in a rat model of prediabetes induced by chronic sucrose intake and low-dose streptozotocin administration. Following prediabetes induction, animals were treated with melatonin (20 mg/kg) for four weeks. Biochemical analyses were conducted to evaluate glucose and lipid metabolism, and mitochondrial function was assessed via gene expression, enzymatic activity, and oxidative stress markers. Additionally, hepatic mitochondrial dynamics were examined by quantifying key regulators genes associated with biogenesis, fusion, and fission. Prediabetic animals exhibited dyslipidemia, hepatic lipid accumulation, increased fat depots, and impaired glucose metabolism. Melatonin significantly reduced serum glucose, triglycerides, and total cholesterol levels, while enhancing the hepatic high-density lipoprotein content. It also stimulated β-oxidation by upregulating hydroxyacyl-CoA dehydrogenase and citrate synthase activity. Mitochondrial dysfunction in prediabetic animals was evidenced by the reduced expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and mitochondrial transcription factor A, both of which were markedly upregulated by melatonin. The indolamine also modulated mithocondrial dynamics by regulating fusion and fission markers, including mitosuin 1 and 2, optic atrophy protein, and dynamin-related protein. Additionally, melatonin mitigated oxidative stress by enhancing the activity of superoxide dismutase and catalase while reducing lipid peroxidation. These findings highlight melatonin’s protective role in prediabetes by improving lipid and energy metabolism, alleviating oxidative stress, and restoring mitochondrial homeostasis. This study provides novel insights into the therapeutic potential of melatonin in addressing metabolic disorders, particularly in mitigating mitochondrial dysfunction associated with prediabetes. Full article
Show Figures

Figure 1

11 pages, 2212 KiB  
Article
Lack of asmt1 or asmt2 Yields Different Phenotypes and Malformations in Larvae to Adult Zebrafish
by Paula Aranda-Martínez, José Fernández-Martínez, María Elena Díaz-Casado, Yolanda Ramírez-Casas, María Martín-Estebané, Alba López-Rodríguez, Germaine Escames and Darío Acuña-Castroviejo
Int. J. Mol. Sci. 2025, 26(8), 3912; https://doi.org/10.3390/ijms26083912 - 21 Apr 2025
Viewed by 454
Abstract
Melatonin is an indolamine derived from tryptophan, which is highly conserved throughout evolution, including in zebrafish, where it controls important cellular processes, such as circadian rhythms, oxidative stress, inflammation, and mitochondrial homeostasis. These functions of melatonin and its synthesis route are quite similar [...] Read more.
Melatonin is an indolamine derived from tryptophan, which is highly conserved throughout evolution, including in zebrafish, where it controls important cellular processes, such as circadian rhythms, oxidative stress, inflammation, and mitochondrial homeostasis. These functions of melatonin and its synthesis route are quite similar to those in humans. One of the most important enzymes in melatonin synthesis is acetylserotonin O-methyltransferase (ASMT), the rate-limiting enzyme, which catalyzes its final step. Due to genome duplication, zebrafish has two genes for this enzyme, asmt1 and asmt2. These genes show differential expression; asmt1 is primarily expressed in the retina and the pineal gland, and asmt2 is expressed in peripheral tissues, indicating different functions. Therefore, the aim of this work was to develop a mutant model for each asmt gene and to analyze their phenotypic effects in zebrafish. The results showed that the loss of 80% of the asmt2 gene affected melatonin concentration and consequently disrupted the sleep/wake rhythm in larvae, decreasing by 50% the distance traveled. In contrast, the loss of asmt1 had a greater influence on the physical condition of adults, as locomotor activity decreased by 50%, and 75% showed malformations. These data reveal distinct functional roles of melatonin depending on their site of production that may affect the development of zebrafish. Full article
Show Figures

Figure 1

11 pages, 1116 KiB  
Communication
Effects of Tryptophan and Physical Exercise on the Modulation of Mechanical Hypersensitivity in a Fibromyalgia-like Model in Female Rats
by Rafael Marins Rezende, Roney Santos Coimbra, Markus Kohlhoff, Lukiya Silva Campos Favarato, Hércia Stampini Duarte Martino, Luciano Bernardes Leite, Leoncio Lopes Soares, Samuel Encarnação, Pedro Forte, António Miguel de Barros Monteiro, Maria do Carmo Gouveia Peluzio and Antônio José Natali
Cells 2024, 13(19), 1647; https://doi.org/10.3390/cells13191647 - 3 Oct 2024
Cited by 1 | Viewed by 1445
Abstract
Though the mechanisms are not fully understood, tryptophan (Trp) and physical exercise seem to regulate mechanical hypersensitivity in fibromyalgia. Here, we tested the impact of Trp supplementation and continuous low-intensity aerobic exercise on the modulation of mechanical hypersensitivity in a fibromyalgia-like model induced [...] Read more.
Though the mechanisms are not fully understood, tryptophan (Trp) and physical exercise seem to regulate mechanical hypersensitivity in fibromyalgia. Here, we tested the impact of Trp supplementation and continuous low-intensity aerobic exercise on the modulation of mechanical hypersensitivity in a fibromyalgia-like model induced by acid saline in female rats. Twelve-month-old female Wistar rats were randomly divided into groups: [control (n = 6); acid saline (n = 6); acid saline + exercise (n = 6); acid saline + Trp (n = 6); and acid saline + exercise + Trp (n = 6)]. Hypersensitivity was caused using two intramuscular jabs of acid saline (20 μL; pH 4.0; right gastrocnemius), 3 days apart. The tryptophan-supplemented diet contained 7.6 g/hg of Trp. The three-week exercise consisted of progressive (30–45 min) treadmill running at 50 to 60% intensity, five times (Monday to Friday) per week. We found that acid saline induced contralateral mechanical hypersensitivity without changing the levels of Trp, serotonin (5-HT), and kynurenine (KYN) in the brain. Hypersensitivity was reduced by exercise (~150%), Trp (~67%), and its combination (~160%). The Trp supplementation increased the levels of Trp and KYN in the brain, and the activity of indoleamine 2,3-dioxygenase (IDO), and decreased the ratio 5-HT:KYN. Exercise did not impact the assessed metabolites. Combining the treatments reduced neither hypersensitivity nor the levels of serotonin and Trp in the brain. In conclusion, mechanical hypersensitivity induced by acid saline in a fibromyalgia-like model in female rats is modulated by Trp supplementation, which increases IDO activity and leads to improved Trp metabolism via the KYN pathway. In contrast, physical exercise does not affect mechanical hypersensitivity through brain Trp metabolism via either the KYN or serotonin pathways. Because this is a short study, generalizing its findings warrants caution. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

12 pages, 618 KiB  
Review
Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin
by Melania Andrani, Eleonora Dall’Olio, Fabio De Rensis, Padet Tummaruk and Roberta Saleri
Biomolecules 2024, 14(8), 934; https://doi.org/10.3390/biom14080934 - 1 Aug 2024
Cited by 2 | Viewed by 2986
Abstract
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light–dark cycles in both [...] Read more.
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light–dark cycles in both humans and animals. In this review, we report that the presence of this hormone in bovine milk, with significant differences in concentration between daytime and nighttime milking, has increased interest in milk as a natural source of bioactive molecules. Melatonin lowers cortisol levels at night, reduces body temperature and blood pressure, coinciding with decreased alertness and performance, acts as an antioxidant and anti-inflammatory agent, modulates the immune system, offers neuroprotective benefits, and supports gastrointestinal health by scavenging free radicals and reducing oxidative stress in dairy cows. Many factors influence the release of melatonin, such as the intensity of artificial lighting during nighttime milking, the frequency of milkings, milk yield, and genetic differences between animals. Nocturnal milking under low-intensity light boosts melatonin, potentially reducing oxidative damage and mastitis risk. Additionally, ultra-high temperature (UHT) treatment does not significantly affect the melatonin content in milk. However, further research on its stability during milk processing and storage is crucial for ensuring product efficacy. In some countries, nighttime milk with naturally elevated melatonin content is already commercialized as a natural aid for sleep. Thus, naturally melatonin-rich milk may be a promising alternative to synthetic supplements for promoting better sleep and overall well-being. Full article
(This article belongs to the Special Issue Melatonin in Normal Physiology and Disease)
Show Figures

Figure 1

21 pages, 1593 KiB  
Review
Melatonin and Vascular Function
by Leandro Mendes, Marcelo Queiroz and Cristina M. Sena
Antioxidants 2024, 13(6), 747; https://doi.org/10.3390/antiox13060747 - 20 Jun 2024
Cited by 10 | Viewed by 5184
Abstract
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and [...] Read more.
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer’s disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology. Full article
Show Figures

Figure 1

11 pages, 1608 KiB  
Article
Immunomodulatory Effects Associated with Lactofermented Cherry Beverage Consumption in Rats
by María Garrido, Bruno Navajas-Preciado, Sara Martillanes, Javier Rocha-Pimienta and Jonathan Delgado-Adámez
Fermentation 2024, 10(6), 284; https://doi.org/10.3390/fermentation10060284 - 28 May 2024
Viewed by 1092
Abstract
Cherry is a fruit which contains elevated amounts of antioxidant compounds, such as anthocyanins, pigments, and vitamins. Furthermore, it possesses high water, sugar, mineral, and indolamine contents. The general objective of this study was to characterise a cherry-based fermented beverage (the ‘sweetheart’ variety) [...] Read more.
Cherry is a fruit which contains elevated amounts of antioxidant compounds, such as anthocyanins, pigments, and vitamins. Furthermore, it possesses high water, sugar, mineral, and indolamine contents. The general objective of this study was to characterise a cherry-based fermented beverage (the ‘sweetheart’ variety) and analyse the effects of its ingestion on (i) circulating serum levels of melatonin and serotonin, (ii) inflammatory response, and iii) serum total antioxidant capacity in rats (Rattus norvegicus). For cherry-based fermented beverage manufacturing, the cherries were washed, the stems and woody endocarps were removed, and ascorbic acid was added (to avoid enzymatic browning). After the homogenisation of the cherry fruit, lactic acid bacteria were inoculated, and the fermentation process was conducted for 36 h. The main bioactive compounds in the cherry beverage were characterised, as well as their total antioxidant capacity. Moreover, an in vivo assay was developed, in which rats ingested the fermented beverage ad libitum for seven days. The inflammatory mediators, the total antioxidant capacity, and the serum levels of melatonin and serotonin were measured. Based on these results, the intake of the cherry-based fermented beverage assayed in this study increased the total antioxidant status of rats, elevated the melatonin and serotonin levels in the serum, and improved the regulation of the inflammatory systemic processes. Full article
(This article belongs to the Special Issue Application of Bacillus in Fermented Food)
Show Figures

Figure 1

17 pages, 9784 KiB  
Article
Potential Neuroprotective Effect of Melatonin in the Hippocampus of Male BTBR Mice
by Matteo Bonetti, Lorena Giugno, Elisa Borsani and Francesca Bonomini
Nutrients 2024, 16(11), 1652; https://doi.org/10.3390/nu16111652 - 28 May 2024
Cited by 5 | Viewed by 2139
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder identified by impairments in common social interactions and repetitive behaviors. In ASD patients, substantial morphological alterations have been observed in the hippocampus, which represents an important region for the development of social skills. Melatonin, commonly [...] Read more.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder identified by impairments in common social interactions and repetitive behaviors. In ASD patients, substantial morphological alterations have been observed in the hippocampus, which represents an important region for the development of social skills. Melatonin, commonly found in many foods and plants, is also produced by the pineal gland. This indolamine, known to regulate the circadian rhythm, shows antioxidant and anti-inflammatory properties. We therefore hypothesized that melatonin may reduce oxidative stress and inflammation in the hippocampus of ASD patients. We explored our hypothesis using the BTBR mouse, a well-regarded murine transgenic model for ASD. Immediately after weaning, male BTBR and C57BL/6 mice underwent an 8-week treatment with melatonin or vehicle. Later, through immunohistochemistry and the immunoblotting analysis of the hippocampus, we evaluated the overall expression and cellular localization of Nrf2 and SOD1, two enzymes involved in the oxidative stress response. Similarly, we evaluated NLRP3 and NFkB, two mediators of inflammation, and GAD67, an enzyme responsible for the synthesis of GABA. Ultimately, we addressed melatonin’s potential to regulate iron metabolism through a DAB-enhanced Perls reaction assay. Results showed melatonin’s potential for modulating the analyzed markers in BTBR mice, suggesting a potential neuroprotective effect in ASD patients. Full article
(This article belongs to the Special Issue Diet Functional Components for Disease Prevention and Management)
Show Figures

Figure 1

13 pages, 22639 KiB  
Article
Biosynthetic Pathways of Tryptophan Metabolites in Saccharomyces cerevisiae Strain: Insights and Implications
by Hsin-Chieh Kung, Ngoc-Han Bui, Bo-Wun Huang, Nicholas Kiprotich Cheruiyot and Guo-Ping Chang-Chien
Int. J. Mol. Sci. 2024, 25(9), 4747; https://doi.org/10.3390/ijms25094747 - 26 Apr 2024
Viewed by 2166
Abstract
Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and [...] Read more.
Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L−1 and 0.0650 ± 0.00211 mg L−1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production. Full article
(This article belongs to the Special Issue Tryptophan in Nutrition and Health 3.0)
Show Figures

Figure 1

12 pages, 2473 KiB  
Review
Role of Melatonin in Ovarian Function
by Giuseppina Basini and Francesca Grasselli
Animals 2024, 14(4), 644; https://doi.org/10.3390/ani14040644 - 17 Feb 2024
Cited by 11 | Viewed by 4143
Abstract
Melatonin is a hormone mainly produced by the pineal gland in the absence of light stimuli. The light, in fact, hits the retina, which sends a signal to the suprachiasmatic nucleus, which inhibits the synthesis of the hormone by the epiphysis. Mostly by [...] Read more.
Melatonin is a hormone mainly produced by the pineal gland in the absence of light stimuli. The light, in fact, hits the retina, which sends a signal to the suprachiasmatic nucleus, which inhibits the synthesis of the hormone by the epiphysis. Mostly by interacting with MT1/MT2 membrane receptors, melatonin performs various physiological actions, among which are its regulation of the sleep–wake cycle and its control of the immune system. One of its best known functions is its non-enzymatic antioxidant action, which is independent from binding with receptors and occurs by electron donation. The hormone is also an indicator of the photoperiod in seasonally reproducing mammals, which are divided into long-day and short-day breeders according to the time of year in which they are sexually active and fertile. It is known that melatonin acts at the hypothalamic–pituitary–gonadal axis level in many species. In particular, it inhibits the hypothalamic release of GnRH, with a consequent alteration of FSH and LH levels. The present paper mainly aims to review the ovarian effect of melatonin. Full article
(This article belongs to the Special Issue Endocrinology of the Female Reproductive System)
Show Figures

Figure 1

30 pages, 2924 KiB  
Article
Molecular Mechanism Biomarkers Predict Diagnosis in Schizophrenia and Schizoaffective Psychosis, with Implications for Treatment
by Stephanie Fryar-Williams, Graeme Tucker, Jörg Strobel, Yichao Huang and Peter Clements
Int. J. Mol. Sci. 2023, 24(21), 15845; https://doi.org/10.3390/ijms242115845 - 31 Oct 2023
Cited by 3 | Viewed by 2431
Abstract
Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase [...] Read more.
Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase MTHFR C677T genotype-related bio markers in blood and urine. Vitamin and mineral cofactors related to methylation and indolamine-catecholamine metabolism were investigated. Biomarker status for 67 symptomatically well-defined cases and 67 asymptomatic control participants was determined using receiver operating characteristics, Spearman’s correlation, and logistic regression. The 5.2%-prevalent MTHFR 677 TT genotype demonstrated a 100% sensitive and specific case-predictive biomarkers of increased riboflavin (vitamin B2) excretion. This was accompanied by low plasma zinc and indicators of a shift from low methylation to high methylation state. The 48.5% prevalent MTHFR 677 CC genotype model demonstrated a low-methylation phenotype with 93% sensitivity and 92% specificity and a negative predictive value of 100%. This model related to lower vitamin cofactors, high histamine, and HPLC urine indicators of lower vitamin B2 and restricted indole-catecholamine metabolism. The 46.3%-prevalent CT genotype achieved high predictive strength for a mixed methylation phenotype. Determination of MTHFR C677T genotype dependent functional biomarker phenotypes can advance diagnostic certainty and inform therapeutic intervention. Full article
Show Figures

Figure 1

9 pages, 309 KiB  
Article
Kynurenine, Kynurenic Acid, Quinolinic Acid and Interleukin-6 Levels in the Serum of Patients with Autism Spectrum Disorder
by Veli Yildirim, Seref Simsek, Ihsan Cetin and Recep Dokuyucu
Medicina 2023, 59(11), 1906; https://doi.org/10.3390/medicina59111906 - 27 Oct 2023
Cited by 4 | Viewed by 2542
Abstract
Background and Objectives: It is known that inflammatory processes play a role in the pathogenesis of autism spectrum disorder (ASD). It is also reported that immune activation induces the kynurenine pathway (KP), as known as the tryptophan destruction pathway. In our study, [...] Read more.
Background and Objectives: It is known that inflammatory processes play a role in the pathogenesis of autism spectrum disorder (ASD). It is also reported that immune activation induces the kynurenine pathway (KP), as known as the tryptophan destruction pathway. In our study, we aimed to investigate whether the serum levels of KP products and interleukin (IL)-6 activating indolamine 2–3 dioxygenase (IDO) enzyme are different in healthy developing children and children with ASD. Materials and Methods: Forty-three ASD children aged 2–9 were included in this study. Forty-two healthy developing children, similar to the patient group in terms of age and gender, were selected as the control group. Serum levels of kynurenic acid, kynurenine, quinolinic acid and IL-6 were analyzed using the ELISA method. ASD severity was evaluated with the Autism Behavior Checklist (ABC). Results: The mean age of children with ASD was 42.4 ± 20.5 months, and that of healthy controls was 48.1 ± 15.8 months. While the serum levels of kynurenic acid, kynurenine and interleukin-6 were higher in the group with ASD (p < 0.05), there was no significant difference (p > 0.05) in terms of the quinolinic acid level. There was no significant difference between the ABC total and subscale scores of children with ASD and biochemical parameters (p > 0.05). Conclusions: We conclude that these biomarkers must be measured in all ASD cases. They may be important for the diagnosis of ASD. Full article
(This article belongs to the Special Issue Atypical Autism: Causes, Diagnosis, and Support)
25 pages, 2763 KiB  
Review
Role of Melatonin in Directing Plant Physiology
by Karthikeyan Ramasamy, Kalarani M. Karuppasami, Senthil Alagarswamy, Kavitha P. Shanmugam, Sivakumar Rathinavelu, Geethalakshmi Vellingiri, Umapathi Muniyappan, Thirukumaran Kanthan, Anitha Kuppusamy, Megala Rajendran, Arunkumar Kathirvel and Selvaraju Kanagarajan
Agronomy 2023, 13(9), 2405; https://doi.org/10.3390/agronomy13092405 - 18 Sep 2023
Cited by 11 | Viewed by 3596
Abstract
Melatonin (MT), a naturally occurring compound, is found in various species worldwide. In 1958, it was first identified in the pineal gland of dairy cows. MT is an “old friend” but a “new compound” for plant biology. It brings experts and research minds [...] Read more.
Melatonin (MT), a naturally occurring compound, is found in various species worldwide. In 1958, it was first identified in the pineal gland of dairy cows. MT is an “old friend” but a “new compound” for plant biology. It brings experts and research minds from the broad field of plant sciences due to its considerable influence on plant systems. The MT production process in plants and animals is distinct, where it has been expressed explicitly in chloroplasts and mitochondria in plants. Tryptophan acts as the precursor for the formation of phyto-melatonin, along with intermediates including tryptamine, serotonin, N-acetyl serotonin, and 5-methoxy tryptamine. It plays a vital role in growth phases such as the seed germination and seedling growth of crop plants. MT significantly impacts the gas exchange, thereby improving physio-chemical functions in plant systems. During stress, the excessive generation and accumulation of reactive oxygen species (ROS) causes protein oxidation, lipid peroxidation, nucleic acid damage, and enzyme inhibition. Because it directly acts as an antioxidant compound, it awakens the plant antioxidant defense system during stress and reduces the production of ROS, which results in decreasing cellular oxidative damage. MT can enhance plant growth and development in response to various abiotic stresses such as drought, salinity, high temperature, flooding, and heavy metals by regulating the antioxidant mechanism of plants. However, these reactions differ significantly from crop to crop and are based on the level and kind of stress. The role of MT in the physiological functions of plants towards plant growth and development, tolerance towards various abiotic stresses, and approaches for enhancing the endogenous MT in plant systems are broadly reviewed and it is suggested that MT is a steering compound in directing major physiological functions of plants under the changing climate in future. Full article
Show Figures

Figure 1

17 pages, 16555 KiB  
Article
Combined Inhibition of Indolamine-2,3-Dioxygenase 1 and C-X-C Chemokine Receptor Type 2 Exerts Antitumor Effects in a Preclinical Model of Cervical Cancer
by Solangy Lizcano-Meneses, Rogelio Hernández-Pando, Ian García-Aguirre, José Bonilla-Delgado, Víctor Manuel Alvarado-Castro, Bulmaro Cisneros, Patricio Gariglio and Enoc Mariano Cortés-Malagón
Biomedicines 2023, 11(8), 2280; https://doi.org/10.3390/biomedicines11082280 - 16 Aug 2023
Viewed by 2105
Abstract
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In [...] Read more.
Cervical cancer is a public health problem diagnosed in advanced stages, and its main risk factor is persistent high-risk human papillomavirus infection. Today, it is necessary to study new treatment strategies, such as immunotherapy, that use different targets of the tumor microenvironment. In this study, the K14E7E2 mouse was used as a cervical cancer model to evaluate the inhibition of indolamine-2,3-dioxygenase 1 (IDO-1) and C-X-C chemokine receptor type 2 (CXCR-2) as potential anti-tumor targets. DL-1MT and SB225002 were administered for 30 days in two regimens (R1 and R2) based on combination and single therapy approaches to inhibit IDO-1 and CXCR-2, respectively. Subsequently, the reproductive tracts were resected and analyzed to determine the tumor areas, and IHCs were performed to assess proliferation, apoptosis, and CD8 cellular infiltration. Our results revealed that combined inhibition of IDO-1 and CXCR-2 significantly reduces the areas of cervical tumors (from 196.0 mm2 to 58.24 mm2 in R1 and 149.6 mm2 to 52.65 mm2 in R2), accompanied by regions of moderate dysplasia, decreased papillae, and reduced inflammation. Furthermore, the proliferation diminished, and apoptosis and intra-tumoral CD8 T cells increased. In conclusion, the combined inhibition of IDO-1 and CXCR-2 is helpful in the antitumor response against preclinical cervical cancer. Full article
(This article belongs to the Special Issue Advances in Therapeutic Strategies in Gynecological Malignant Tumors)
Show Figures

Graphical abstract

12 pages, 2937 KiB  
Article
Effect of Leflunomide–Metal Complexes on ROS, TNF, and Brain Indolamines in Comparison with Anti-Depressants as Adjunct Therapy in Rheumatoid Arthritic Model
by Almas Naeem, Noor Jahan, Moona Mehboob Khan, Ghulam Abbas, Faheema Siddiqui, Muhammad Usaid Khalid and Waqas Ahmed Farooqui
Biomedicines 2023, 11(8), 2214; https://doi.org/10.3390/biomedicines11082214 - 7 Aug 2023
Cited by 1 | Viewed by 1993
Abstract
Leflunomide is an isoxazole immunomodulating drug used to treat rheumatoid arthritis (RA). It is adopted as a metal-containing molecule to proceed with saturated salts of essential and detected metals; it amends the pharmacokinetic and pharmacodynamics activity of leflunomide to provide [M(Lef)4]X [...] Read more.
Leflunomide is an isoxazole immunomodulating drug used to treat rheumatoid arthritis (RA). It is adopted as a metal-containing molecule to proceed with saturated salts of essential and detected metals; it amends the pharmacokinetic and pharmacodynamics activity of leflunomide to provide [M(Lef)4]X2-type complexes. Earlier it has been reported that after forming complexes with metals, leflunomide anti-arthritic activity was significantly altered in an acute arthritic model. In the present study, we evaluated the possible modification in anti-arthritic activities of leflunomide–metal complexes (Mg+2, Ca+2, Fe+2, Zn+2) with and without an anti-depressant drug, i.e., fluoxetine (10 mg/kg) in a chronic AIA model. Rats (n = 5) were administered with 0.1 mL of CFA into the right hind paw while treated groups received leflunomide and its metal complexes orally (3.2 mg/kg) for 24 days. On the final day of experiment, rats were sacrificed; a specific rat immunoassay ELISA kit was used to assess TNF-α in serum samples and read at 450 nm; a tissue sample of a paw was homogenized in a phosphate buffer using DCFH-DA dye for binding to assess ROS. A rat’s brain sample was homogenized and evaluated for tryptophan, serotonin (5-HT), and HIAA by RP-HPLC with EC detector. The overall TNF production was altered in treated rats. In addition, a decreased ROS was observed in all categories, except lef+Mg+2 group. Moreover, depletion in the brain indolamine levels were found in treated groups; an upraised level of these indolamines was observed when fluoxetine was added. It is concluded that metals affect leflunomide activity on complexation and simultaneous administration of fluoxetine cope up with the depression in arthritic-induced rats. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

11 pages, 542 KiB  
Article
Fatigue in Patients on Chronic Hemodialysis: The Role of Indoleamine 2,3-Dioxygenase (IDO) Activity, Interleukin-6, and Muscularity
by Alessio Molfino, Giovanni Imbimbo, Maria Ida Amabile, Thomas Ammann, Luana Lionetto, Gerardo Salerno, Maurizio Simmaco, Maria Grazia Chiappini and Maurizio Muscaritoli
Nutrients 2023, 15(4), 876; https://doi.org/10.3390/nu15040876 - 9 Feb 2023
Cited by 6 | Viewed by 2493
Abstract
Fatigue is a frequent symptom in hemodialysis (HD), and the indolamine-2,3-dioxygenase (IDO) metabolic trap has been hypothesized in the pathogenesis of fatigue. The association between IDO activity according to fatigue and its relationship with muscle mass and function in HD patients was verified. [...] Read more.
Fatigue is a frequent symptom in hemodialysis (HD), and the indolamine-2,3-dioxygenase (IDO) metabolic trap has been hypothesized in the pathogenesis of fatigue. The association between IDO activity according to fatigue and its relationship with muscle mass and function in HD patients was verified. Chronic HD patients were considered, and fatigue was assessed. The plasma kynurenines and tryptophan ratio (Kyn/Trp), as surrogate of IDO activity, and interleukin (IL)-6 were measured. Muscularity was assessed by BIA and muscle strength by hand-grip dynamometer. 50 HD patients were enrolled, and fatigue was present in 24% of the cohort. Patients with fatigue showed higher Kyn/Trp (p = 0.005), were older (p = 0.007), and IL-6 levels resulted higher than in non-fatigue patients (p < 0.001). HD patients with fatigue showed lower intracellular water (surrogate of muscle mass) (p < 0.001), as well as lower hand grip strength (p = 0.02). The Kyn/Trp ratio positively correlated with IL-6 and ECW/ICW (p = 0.004 and p = 0.014). By logistic regression analysis, higher ICW/h2 was associated with lower odds of fatigue (OR, 0.10; 95% CI, 0.01 to 0.73). In conclusion, our cohort fatigue was associated with a higher Kyn/Trp ratio, indicating a modulation of IDO activity. The Kyn/Trp ratio correlated with IL-6, suggesting a potential role of IDO and inflammation in inducing fatigue and changes in muscularity. Full article
(This article belongs to the Special Issue Hot Topics in Clinical Nutrition)
Show Figures

Figure 1

Back to TopTop