Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = indirect immunofluorescence assay (iIFA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1898 KiB  
Article
Evaluation of the Accuracy of Estimated Endpoint Titer of NOVA View in Indirect Immunofluorescent Antinuclear Antibody Testing
by Hae Weon Cho, Soon-Ho Jeong, Jun Sung Hong, Dokyun Kim, Yongjung Park and Seok Hoon Jeong
Diagnostics 2024, 14(15), 1580; https://doi.org/10.3390/diagnostics14151580 - 23 Jul 2024
Cited by 1 | Viewed by 1491
Abstract
For antinuclear antibody (ANA) screening, the gold standard method is an indirect immunofluorescence assay (IIFA) using HEp-2 cells, and a serial dilution test is needed to determine the endpoint titer. We aimed to evaluate the accuracy of the estimated endpoint titer (eEPT) by [...] Read more.
For antinuclear antibody (ANA) screening, the gold standard method is an indirect immunofluorescence assay (IIFA) using HEp-2 cells, and a serial dilution test is needed to determine the endpoint titer. We aimed to evaluate the accuracy of the estimated endpoint titer (eEPT) by the NOVA View system, by comparing it with the EPT by the serial dilution method (dEPT). The endpoint titers of a total of 1518 ANA positive cases with five major patterns including speckled, homogeneous, centromere, nucleolar, and nuclear dots patterns were determined using both the estimation function and the serial dilution method by the NOVA View system. A significant correlation between the light intensity unit (LIU) values and dEPTs was identified in all five patterns with high ρ values, ranging from 0.666 to 0.832. However, the overall exact match rate between dEPT and eEPT was 22.1% (336/1518), with the ±one-titer match rate being highest in the centromere pattern (62.8%, 81/129), and lowest in the homogeneous pattern (37.6%, 200/532). This suggests that while LIU values correlate well with dEPT, there are discrepancies in numerical agreement. Most cases that did not show an exact match, showed one-to-three-titer overestimations by eEPT. Therefore, adjusting eEPT downward significantly improved the concordance rates with dEPTs. Further investigation for an appropriate cutoff of LIU values for determining eEPT should be performed for clinical application and contribution to the standardization of the ANA titer. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

19 pages, 1628 KiB  
Article
Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany
by Philipp Johannes Brandenburg, Anna Obiegala, Hannah Maureen Schmuck, Gerhard Dobler, Lidia Chitimia-Dobler and Martin Pfeffer
Pathogens 2023, 12(2), 185; https://doi.org/10.3390/pathogens12020185 - 25 Jan 2023
Cited by 11 | Viewed by 3030
Abstract
Tick-borne encephalitis (TBE) is Eurasia’s most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the [...] Read more.
Tick-borne encephalitis (TBE) is Eurasia’s most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the transmission cycle still need to be understood. To better understand the infection dynamics, rodents were captured in a capture-mark-release-recapture-study in two natural foci in Bavaria, Germany, monthly from March 2019 to October 2022. Overall, 651 blood and thoracic lavage samples from 478 different wild rodents (Clethrionomys glareolus and Apodemus flavicollis) were analyzed for antibodies against tick-borne encephalitis virus (TBEV) by indirect immunofluorescence assay (IIFA) and confirmed using a serum neutralization test (SNT). Furthermore, a generalized linear mixed model (GLMM) analysis was performed to investigate ecological and individual factors for the probability of infection in rodents. Clethrionomys glareolus (19.4%) had a higher seroprevalence than A. flavicollis (10.5%). Within Cl. glareolus, more males (40.4%) than females (15.6%) were affected, and more adults (25.4%) than juveniles (9.8%). The probability of infection of rodents rather depends on factors such as species, sex, and age than on the study site of a natural focus, year, and season. The high incidence rates of rodents, particularly male adult bank voles, highlight their critical role in the transmission cycle of TBEV in a natural focus and demonstrate that serologically positive rodents can be reliably detected in a natural focus regardless of season or year. In addition, these data contribute to a better understanding of the TBEV cycle and thus could improve preventive strategies for human infections. Full article
(This article belongs to the Special Issue Tick-Borne Encephalitis Virus)
Show Figures

Figure 1

18 pages, 2122 KiB  
Article
Human Infections with Borna Disease Virus 1 (BoDV-1) Primarily Lead to Severe Encephalitis: Further Evidence from the Seroepidemiological BoSOT Study in an Endemic Region in Southern Germany
by Markus Bauswein, Lisa Eidenschink, Gertrud Knoll, Bernhard Neumann, Klemens Angstwurm, Saida Zoubaa, Markus J Riemenschneider, Benedikt M J Lampl, Matthias Pregler, Hans Helmut Niller, Jonathan Jantsch, André Gessner, Yvonne Eberhardt, Gunnar Huppertz, Torsten Schramm, Stefanie Kühn, Michael Koller, Thomas Drasch, Yvonne Ehrl, Bernhard Banas, Robert Offner, Barbara Schmidt and Miriam C. Banasadd Show full author list remove Hide full author list
Viruses 2023, 15(1), 188; https://doi.org/10.3390/v15010188 - 9 Jan 2023
Cited by 20 | Viewed by 4394
Abstract
More than 40 human cases of severe encephalitis caused by Borna disease virus 1 (BoDV-1) have been reported to German health authorities. In an endemic region in southern Germany, we conducted the seroepidemiological BoSOT study (“BoDV-1 after solid-organ transplantation”) to assess whether there [...] Read more.
More than 40 human cases of severe encephalitis caused by Borna disease virus 1 (BoDV-1) have been reported to German health authorities. In an endemic region in southern Germany, we conducted the seroepidemiological BoSOT study (“BoDV-1 after solid-organ transplantation”) to assess whether there are undetected oligo- or asymptomatic courses of infection. A total of 216 healthy blood donors and 280 outpatients after solid organ transplantation were screened by a recombinant BoDV-1 ELISA followed by an indirect immunofluorescence assay (iIFA) as confirmatory test. For comparison, 288 serum and 258 cerebrospinal fluid (CSF) samples with a request for tick-borne encephalitis (TBE) diagnostics were analyzed for BoDV-1 infections. ELISA screening reactivity rates ranged from 3.5% to 18.6% depending on the cohort and the used ELISA antigen, but only one sample of a patient from the cohort with requested TBE diagnostics was confirmed to be positive for anti-BoDV-1-IgG by iIFA. In addition, the corresponding CSF sample of this patient with a three-week history of severe neurological disease tested positive for BoDV-1 RNA. Due to the iIFA results, all other results were interpreted as false-reactive in the ELISA screening. By linear serological epitope mapping, cross-reactions with human and bacterial proteins were identified as possible underlying mechanism for the false-reactive ELISA screening results. In conclusion, no oligo- or asymptomatic infections were detected in the studied cohorts. Serological tests based on a single recombinant BoDV-1 antigen should be interpreted with caution, and an iIFA should always be performed in addition. Full article
(This article belongs to the Special Issue Bornaviridae)
Show Figures

Figure 1

6 pages, 256 KiB  
Communication
High Seroprevalence against SARS-CoV-2 among Dogs and Cats, Poland, 2021/2022
by Edyta Kaczorek-Łukowska, Kerstin Wernike, Martin Beer, Małgorzata Wróbel, Joanna Małaczewska, Elżbieta Mikulska-Skupień, Karolina Malewska, Izabela Mielczarska and Andrzej Krzysztof Siwicki
Animals 2022, 12(16), 2016; https://doi.org/10.3390/ani12162016 - 9 Aug 2022
Cited by 12 | Viewed by 2366
Abstract
The coronavirus SARS-CoV-2 is responsible for a pandemic in the human population that has unfolded since the beginning of 2020 and has led to millions of deaths globally. Apart from humans, SARS-CoV-2 has been confirmed in various animal species, including felines, canines, mustelids, [...] Read more.
The coronavirus SARS-CoV-2 is responsible for a pandemic in the human population that has unfolded since the beginning of 2020 and has led to millions of deaths globally. Apart from humans, SARS-CoV-2 has been confirmed in various animal species, including felines, canines, mustelids, and primates. Of these species, dogs and cats are the most popular companion animals worldwide. Several seroprevalence studies have already been performed in these animal species; however, the results vary depending on the location and especially the time of sampling. Here, serum samples were collected from a total of 388 dogs and 243 cats from three veterinary clinics in two cities (Gdańsk and Olsztyn) in Poland between October 2021 and February 2022, when the country was in the midst of the fourth wave of viral spread. All sera were tested for antibodies against SARS-CoV-2 by a multispecies ELISA based on the receptor-binding domain and by an indirect immunofluorescence assay (iIFA). Overall, 18.9% of the feline sera and 16.0% of the canine sera tested positive using ELISA and iIFA. This relatively high seroprevalence among randomly selected animals is most likely related to the high case numbers in the human population and indicates a continuous occurrence of transspecies virus transmissions from infected owners to their pets. Hence, dogs and cats should be included in monitoring studies and/or outbreak investigations for a better understanding of the epidemiology of this virus. Full article
(This article belongs to the Section Veterinary Clinical Studies)
13 pages, 4208 KiB  
Article
Cross-Reaction or Co-Infection? Serological Discrimination of Antibodies Directed against Dugbe and Crimean-Congo Hemorrhagic Fever Orthonairovirus in Nigerian Cattle
by Julia Hartlaub, Oluwafemi B. Daodu, Balal Sadeghi, Markus Keller, James Olopade, Daniel Oluwayelu and Martin H. Groschup
Viruses 2021, 13(7), 1398; https://doi.org/10.3390/v13071398 - 19 Jul 2021
Cited by 17 | Viewed by 3781
Abstract
Dugbe orthonairovirus (DUGV) and Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) are tick-borne arboviruses within the order Bunyavirales. Both viruses are endemic in several African countries and can induce mild (DUGV, BSL 3) or fatal (CCHFV, BSL 4) disease in humans. Ruminants play a [...] Read more.
Dugbe orthonairovirus (DUGV) and Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) are tick-borne arboviruses within the order Bunyavirales. Both viruses are endemic in several African countries and can induce mild (DUGV, BSL 3) or fatal (CCHFV, BSL 4) disease in humans. Ruminants play a major role in their natural transmission cycle. Therefore, they are considered as suitable indicator animals for serological monitoring studies to assess the risk for human infections. Although both viruses do not actually belong to the same serogroup, cross-reactivities have already been reported earlier—hence, the correct serological discrimination of DUGV and CCHFV antibodies is crucial. In this study, 300 Nigerian cattle sera (150 CCHFV seropositive and seronegative samples, respectively) were screened for DUGV antibodies via N protein-based ELISA, indirect immunofluorescence (iIFA) and neutralization assays. Whereas no correlation between the CCHFV antibody status and DUGV seroprevalence data could be demonstrated with a newly established DUGV ELISA, significant cross-reactivities were observed in an immunofluorescence assay. Moreover, DUGV seropositive samples did also cross-react in a species-adapted commercial CCHFV iIFA. Therefore, ELISAs seem to be able to reliably differentiate between DUGV and CCHFV antibodies and should preferentially be used for monitoring studies. Positive iIFA results should always be confirmed by ELISAs. Full article
(This article belongs to the Special Issue Arboviruses: Molecular Biology, Evolution and Control)
Show Figures

Figure 1

13 pages, 2837 KiB  
Article
Deciphering Antibody Responses to Orthonairoviruses in Ruminants
by Julia Hartlaub, Markus Keller and Martin H. Groschup
Microorganisms 2021, 9(7), 1493; https://doi.org/10.3390/microorganisms9071493 - 13 Jul 2021
Cited by 9 | Viewed by 2950
Abstract
Antibody cross-reactivities between related viruses are common diagnostic challenges, resulting in reduced diagnostic specificities and sensitivities. In this study, antibody cross-reactions between neglected members of the genus Orthonairovirus—Hazara (HAZV), Dugbe (DUGV), and Nairobi sheep disease orthonairovirus (NSDV)—were investigated. Mono-specific ovine and bovine [...] Read more.
Antibody cross-reactivities between related viruses are common diagnostic challenges, resulting in reduced diagnostic specificities and sensitivities. In this study, antibody cross-reactions between neglected members of the genus Orthonairovirus—Hazara (HAZV), Dugbe (DUGV), and Nairobi sheep disease orthonairovirus (NSDV)—were investigated. Mono-specific ovine and bovine sera following experimental infections as well immunization trials with HAZV, DUGV, and NSDV were tested in homologous and heterologous virus-specific assays, namely indirect ELISAs based on recombinant N protein, indirect immunofluorescence assays (iIFA), and two neutralization test formats (plaque reduction neutralization test (PRNT) and micro-virus neutralization test (mVNT)). The highest specificities were achieved with the ELISAs, followed by the mVNT, iIFA, and PRNT. Cross-reactivities were mainly observed within the Nairobi sheep disease serogroup–but surprisingly, HAZV antibodies in PRNT did also neutralize NSDV and DUGV. In conclusion, we recommend ELISAs and mVNTs for a discriminative diagnostic approach to differentiate between these antibodies. NSDV antisera were also used in serological assays for the detection of antibodies against the human pathogen Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV). Interestingly, all CCHFV ELISAs (In-house and commercial) achieved high diagnostic specificities, whereas significant cross-reactivities were observed in a CCHFV iIFA. Previously, similar results were obtained when analyzing the HAZV and DUGV antisera. Full article
(This article belongs to the Special Issue Arboviruses: Diagnostic, Phylogeny and Interactions)
Show Figures

Figure 1

19 pages, 793 KiB  
Article
First Serological Evidence of Crimean-Congo Hemorrhagic Fever Virus and Rift Valley Fever Virus in Ruminants in Tunisia
by Khaoula Zouaghi, Ali Bouattour, Hajer Aounallah, Rebecca Surtees, Eva Krause, Janine Michel, Aymen Mamlouk, Andreas Nitsche and Youmna M’ghirbi
Pathogens 2021, 10(6), 769; https://doi.org/10.3390/pathogens10060769 - 18 Jun 2021
Cited by 18 | Viewed by 5429
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV, Nairoviridae family) and Rift Valley fever virus (RVFV, Phenuiviridae family) are zoonotic vector-borne pathogens with clinical relevance worldwide. Our study aimed to determine seroprevalences of these viruses and potential risk factors among livestock (cattle, sheep, and goats) in [...] Read more.
Crimean-Congo hemorrhagic fever virus (CCHFV, Nairoviridae family) and Rift Valley fever virus (RVFV, Phenuiviridae family) are zoonotic vector-borne pathogens with clinical relevance worldwide. Our study aimed to determine seroprevalences of these viruses and potential risk factors among livestock (cattle, sheep, and goats) in Tunisia. Sera were tested for antibodies against CCHFV (n = 879) and RVFV (n = 699) using various enzyme-linked immunosorbent assays (ELISAs) and indirect immunofluorescence assays (IIFA). The overall seroprevalence of IgG antibodies was 8.6% (76/879) and 2.3% (16/699) against CCHFV and RVFV, respectively. For CCHF seropositivity bioclimatic zones and breed were potential risk factors for the three tested animal species; while the season was associated with cattle and sheep seropositivity, tick infestation was associated with cattle and goats seropositivity and age as a risk factor was only associated with cattle seropositivity. Age and season were significantly associated with RVFV seropositivity in sheep. Our results confirm the circulation of CCHFV and RVFV in Tunisia and identified the principal risk factors in ruminants. This knowledge could help to mitigate the risk of ruminant infections and subsequently also human infections. Full article
(This article belongs to the Collection Feature Papers in Viral Pathogens)
Show Figures

Figure 1

8 pages, 459 KiB  
Communication
Comparison of Three Serological Methods for the Epidemiological Investigation of TBE in Dogs
by Philipp Girl, Maja Haut, Sandra Riederer, Martin Pfeffer and Gerhard Dobler
Microorganisms 2021, 9(2), 399; https://doi.org/10.3390/microorganisms9020399 - 15 Feb 2021
Cited by 13 | Viewed by 2536
Abstract
Tick-borne encephalitis (TBE) virus is an emerging pathogen that causes severe infections in humans. Infection risk areas are mostly defined based on the incidence of human cases, a method which does not work well in areas with sporadic TBE cases. Thus, sentinel animals [...] Read more.
Tick-borne encephalitis (TBE) virus is an emerging pathogen that causes severe infections in humans. Infection risk areas are mostly defined based on the incidence of human cases, a method which does not work well in areas with sporadic TBE cases. Thus, sentinel animals may help to better estimate the existing risk. Serological tests should be thoroughly evaluated for this purpose. Here, we tested three test formats to assess the use of dogs as sentinel animals. A total of 208 dog sera from a known endemic area in Southern Germany were tested in an All-Species-ELISA and indirect immunofluorescence assays (IIFA), according to the manufacturer’s instructions. Sensitivity and specificity for both were determined in comparison to the micro-neutralization test (NT) results. Of all 208 samples, 22.1% tested positive in the micro-NT. A total of 18.3% of the samples showed characteristic fluorescence in the IIFA and were, thus, judged positive. In comparison to the micro-NT, a sensitivity of 78.3% and a specificity of 98.8% was obtained. In the ELISA, 19.2% of samples tested positive, with a sensitivity of 84.8% and a specificity of 99.4%. The ELISA is a highly specific test for TBE-antibody detection in dogs and should be well suited for acute diagnostics. However, due to deficits in sensitivity, it cannot replace the NT, at least for epidemiological studies. With even lower specificity and sensitivity, the same applies to IIFA. Full article
(This article belongs to the Special Issue Tick-Borne Encephalitis)
Show Figures

Figure 1

15 pages, 923 KiB  
Article
Epidemiological Investigations of Four Cowpox Virus Outbreaks in Alpaca Herds, Germany
by Almut Prkno, Donata Hoffmann, Daniela Goerigk, Matthias Kaiser, Anne Catherine Franscisca Van Maanen, Kathrin Jeske, Maria Jenckel, Florian Pfaff, Thomas W. Vahlenkamp, Martin Beer, Rainer G. Ulrich, Alexander Starke and Martin Pfeffer
Viruses 2017, 9(11), 344; https://doi.org/10.3390/v9110344 - 18 Nov 2017
Cited by 25 | Viewed by 7425
Abstract
Four cowpox virus (CPXV) outbreaks occurred in unrelated alpaca herds in Eastern Germany during 2012–2017. All incidents were initially noticed due to severe, generalized, and finally lethal CPXV infections, which were confirmed by testing of tissue and serum samples. As CPXV-infection has been [...] Read more.
Four cowpox virus (CPXV) outbreaks occurred in unrelated alpaca herds in Eastern Germany during 2012–2017. All incidents were initially noticed due to severe, generalized, and finally lethal CPXV infections, which were confirmed by testing of tissue and serum samples. As CPXV-infection has been described in South American camelids (SACs) only three times, all four herds were investigated to gain a deeper understanding of CPXV epidemiology in alpacas. The different herds were investigated twice, and various samples (serum, swab samples, and crusts of suspicious pox lesions, feces) were taken to identify additionally infected animals. Serum was used to detect CPXV-specific antibodies by performing an indirect immunofluorescence assay (iIFA); swab samples, crusts, and feces were used for detection of CPXV-specific DNA in a real-time PCR. In total, 28 out of 107 animals could be identified as affected by CPXV, by iIFA and/or PCR. Herd seroprevalence ranged from 16.1% to 81.2%. To investigate the potential source of infection, wild small mammals were trapped around all alpaca herds. In two herds, CPXV-specific antibodies were found in the local rodent population. In the third herd, CPXV could be isolated from a common vole (Microtus arvalis) found drowned in a water bucket used to water the alpacas. Full genome sequencing and comparison with the genome of a CPXV from an alpaca from the same herd reveal 99.997% identity, providing further evidence that the common vole is a reservoir host and infection source of CPXV. Only in the remaining fourth herd, none of the trapped rodents were found to be CPXV-infected. Rodents, as ubiquitous reservoir hosts, in combination with increasingly popular alpacas, as susceptible species, suggest an enhanced risk of future zoonotic infections. Full article
(This article belongs to the Special Issue Smallpox and Emerging Zoonotic Orthopoxviruses: What Is Coming Next?)
Show Figures

Graphical abstract

14 pages, 4959 KiB  
Article
Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus)
by Xiuzhen Sheng, Ronghua Wu, Xiaoqian Tang, Jing Xing and Wenbin Zhan
Int. J. Mol. Sci. 2015, 16(11), 26506-26519; https://doi.org/10.3390/ijms161125974 - 5 Nov 2015
Cited by 13 | Viewed by 6706
Abstract
The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder [...] Read more.
The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder and turbot (Scophthalmus maximus). Indirect immunofluorescence assay (IIFA) and immunohistochemistry showed that 27.8R was widely expressed in tested tissues of healthy turbot. The indirect enzyme-linked immunosorbent assay indicated that 27.8R expression was relatively higher in stomach, gill, heart, and intestine, followed by skin, head kidney, spleen, blood cells, kidney and liver, and lower in ovary and brain in healthy turbot, and it was significantly up-regulated after LCDV infection. Meanwhile, real-time quantitative PCR demonstrated that LCDV was detected in heart, peripheral blood cells, and head kidney at 3 h post infection (p.i.), and then in other tested tissues at 12 h p.i. LCDV copies increased in a time-dependent manner, and were generally higher in the tissues with higher 27.8R expression. Additionally, IIFA showed that 27.8R and LCDV were detected at 3 h p.i. in some leukocytes. These results suggested that 27.8R also served as a receptor in turbot, and LCDV can infect some leukocytes which might result in LCDV spreading to different tissues in turbot. Full article
(This article belongs to the Special Issue Fish Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop