Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = in-situ copolymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12390 KiB  
Article
Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide
by Chaima Bouyahya, Panagiotis A. Klonos, Alexandra Zamboulis, Eleftheria Xanthopoulou, Nina Maria Ainali, Mustapha Majdoub, Apostolos Kyritsis and Dimitrios N. Bikiaris
Polymers 2024, 16(15), 2173; https://doi.org/10.3390/polym16152173 - 30 Jul 2024
Cited by 2 | Viewed by 1394
Abstract
A series of novel renewable copolymers based on poly(ethylene succinate) (PESu) and poly(isosorbide succinate) (PISSu), with the Isosorbide (Is)/PESu molar ratio varying from 5/95 to 75/25, were synthesized in-situ and studied in this work. A sum of characterization techniques was employed here for [...] Read more.
A series of novel renewable copolymers based on poly(ethylene succinate) (PESu) and poly(isosorbide succinate) (PISSu), with the Isosorbide (Is)/PESu molar ratio varying from 5/95 to 75/25, were synthesized in-situ and studied in this work. A sum of characterization techniques was employed here for the structural and thermo-dynamical characterization. The sophisticated technique of dielectric spectroscopy, along with proper analysis, enabled the molecular dynamics mapping of both the local and segmental types, which is presented for such materials for the first time. With increasing the Is fraction, shorter copolymeric entities were gradually formed. Based on the overall findings, the systems were found to be homogeneous, e.g., exhibiting single glass transitions, with the two polymer segments being found to be excellently distributed. The latter is indirect, although strong, evidence for the successful copolymerization. The thermal degradation mechanism for the copolymers was exhaustingly explored employing analytical pyrolysis. The systems exhibited, in general, good thermal stability, according to the thermogravimetric analysis. Confirming one of the initial scopes for the present systems, isosorbide plays here the role of hardener (PISSu) over the soft polymer (PESu), and this is reflected in the monotonic increase of the glass transition temperature, Tg, from −16 to ~56 °C. The introduction of Is results in an increase in constraints (hardening of the matrix), while there seems to be an overall densification of the polymer (decrease of the free volume). Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Figure 1

34 pages, 5137 KiB  
Review
Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications
by Mohamed Mahmoud Nasef, Bhuvanesh Gupta, Kamyar Shameli, Chetna Verma, Roshafima Rasit Ali and Teo Ming Ting
Polymers 2021, 13(18), 3102; https://doi.org/10.3390/polym13183102 - 15 Sep 2021
Cited by 32 | Viewed by 6142
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and [...] Read more.
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

11 pages, 1587 KiB  
Communication
Thiol-Substituted Poly(2-oxazoline)s with Photolabile Protecting Groups—Tandem Network Formation by Light
by Niklas Jung, Fiona Diehl and Ulrich Jonas
Polymers 2020, 12(8), 1767; https://doi.org/10.3390/polym12081767 - 7 Aug 2020
Cited by 12 | Viewed by 4343
Abstract
Herein, we present a novel polymer architecture based on poly(2-oxazoline)s bearing protected thiol functionalities, which can be selectively liberated by irradiation with UV light. Whereas free thiol groups can suffer from oxidation or other spontaneous reactions that degrade polymer performance, this strategy with [...] Read more.
Herein, we present a novel polymer architecture based on poly(2-oxazoline)s bearing protected thiol functionalities, which can be selectively liberated by irradiation with UV light. Whereas free thiol groups can suffer from oxidation or other spontaneous reactions that degrade polymer performance, this strategy with masked thiol groups offers the possibility of photodeprotection on demand with spatio-temporal control while maintaining polymer integrity. Here, we exploit this potential for a tandem network formation upon irradiation with UV light by thiol deprotection and concurrent crosslinking via thiol-ene coupling. The synthesis of the novel oxazoline monomer 2-{2-[(2-nitrobenzyl)thio]ethyl}-4,5-dihydrooxazole (NbMEtOxa) carrying 2-nitrobenzyl-shielded thiol groups and its cationic ring-opening copolymerization at varying ratios with 2-ethyl-2-oxazoline (EtOxa) is described. The tandem network formation was exemplarily demonstrated with the photoinitator 2-hydroxy-2-methylpropiophenone (HMPP) and pentaerythritol tetraacrylate (PETA), a commercially available, tetrafunctional vinyl crosslinker. The key findings of the conducted experiments indicate that a ratio of ~10% NbMEtOxa repeat units in the polymer backbone is sufficient for network formation and in-situ gelation in N,N-dimethylformamide. Full article
(This article belongs to the Special Issue In-Situ Forming and Self-Healing Hydrogels)
Show Figures

Graphical abstract

21 pages, 5574 KiB  
Article
Reduced Graphene Oxide/Poly(Pyrrole-co-Thiophene) Hybrid Composite Materials: Synthesis, Characterization, and Supercapacitive Properties
by Anwar ul Haq Ali Shah, Sami Ullah, Salma Bilal, Gul Rahman and Humaira Seema
Polymers 2020, 12(5), 1110; https://doi.org/10.3390/polym12051110 - 13 May 2020
Cited by 27 | Viewed by 4903
Abstract
Reduced graphene oxide/poly(pyrrol-co-thiophene) (RGO/COP), prepared by facile in-situ oxidative copolymerization, is reported as a new hybrid composite material with improved supercapacitance performance as compared to the respective homopolymers and their composites with RGO. The as-prepared hybrid materials were characterized with ultraviolet–visible [...] Read more.
Reduced graphene oxide/poly(pyrrol-co-thiophene) (RGO/COP), prepared by facile in-situ oxidative copolymerization, is reported as a new hybrid composite material with improved supercapacitance performance as compared to the respective homopolymers and their composites with RGO. The as-prepared hybrid materials were characterized with ultraviolet–visible (UV–Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The electrochemical behavior and energy storage properties of the materials were tested by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrostatic impedance spectroscopy (EIS) techniques in 0.5 M H2SO4. The specific capacitance (Csp) for RGO/COP calculated from the CV curve was 467 F/g at a scan rate of 10 mV/s. While the Csp calculated from the GCD was 417 F/g at a current density of 0.81 A/g. The energy density calculated was 86.4 Wh/kg with a power density of 630 W/kg. The hybrid composite exhibits good cyclic stability with 65% capacitance retention after 1000 cycles at a scan rate of 100 mV/s. The present work brings a significance development of RGO/COP composites to the electrode materials for pseudocapacitive application. Full article
Show Figures

Graphical abstract

16 pages, 4335 KiB  
Article
Nanopiezoelectric Devices for Energy Generation Based on ZnO Nanorods/Flexible-Conjugated Copolymer Hybrids Using All Wet-Coating Processes
by Yu-Ping Lee, Chieh-Chuan Lin, Chih-Chung Hsiao, Po-An Chou, Yao-Yi Cheng, Chih-Chen Hsieh and Chi-An Dai
Micromachines 2020, 11(1), 14; https://doi.org/10.3390/mi11010014 - 20 Dec 2019
Cited by 8 | Viewed by 3085
Abstract
In this study, nanopiezoelectric devices based on ZnO nanorod array/conducting polymers are fabricated for wearable power generation application. To replace the inorganic rigid indium-tin oxide (ITO) conducting coating commonly used in the nanogenerator devices, a series of flexible polyaniline-based conducting copolymers underlying the [...] Read more.
In this study, nanopiezoelectric devices based on ZnO nanorod array/conducting polymers are fabricated for wearable power generation application. To replace the inorganic rigid indium-tin oxide (ITO) conducting coating commonly used in the nanogenerator devices, a series of flexible polyaniline-based conducting copolymers underlying the perpendicularly-oriented ZnO nanorod arrays has been synthesized with improved electric conductivity by the copolymerization of aniline and 3,4-ethylenedioxythiophene (EDOT) monomers in order to optimize the piezoelectric current collection efficiency of the devices. It is found that significantly higher conductivity can be obtained by small addition of EDOT monomer into aniline monomer solution using an in-situ oxidative polymerization method for the synthesis of the copolymer coatings. The highest conductivity of aniline-rich copolymer is 65 S/cm, which is 2.5 times higher than that for homopolymer polyaniline coating. Subsequently, perpendicularly-oriented ZnO nanorod arrays are fabricated on the polyaniline-based copolymer substrates via a ZnO nanoparticle seeded hydrothermal fabrication process. The surface morphology, crystallinity, orientation, and crystal size of the synthesized ZnO nanorod arrays are fully examined with various synthesis parameters for copolymer coatings with different monomer compositions. It is found that piezoelectric current generated from the devices is at least five times better for the device with improved electric conductivity of the copolymer and the dense formation of ZnO nanorod arrays on the coating. Therefore, these results demonstrate the advantage of using flexible π-conjugated copolymer films with enhanced conductivity to further improve piezoelectric performance for future wearable energy harvesting application based on all wet chemical coating processes. Full article
(This article belongs to the Special Issue Organic Electronic Devices)
Show Figures

Figure 1

13 pages, 1471 KiB  
Article
Methylene-Bridged Tridentate Salicylaldiminato Binuclear Titanium Complexes as Copolymerization Catalysts for the Preparation of LLDPE through [Fe]/[Ti] Tandem Catalysis
by Yani Luo, Jian Li, Derong Luo, Qingliang You, Zifeng Yang, Tingcheng Li, Xiandan Li and Guangyong Xie
Polymers 2019, 11(7), 1114; https://doi.org/10.3390/polym11071114 - 1 Jul 2019
Cited by 13 | Viewed by 3921
Abstract
A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight and branching degree was successfully prepared with ethylene as the sole monomer feed. The [...] Read more.
A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight and branching degree was successfully prepared with ethylene as the sole monomer feed. The polymerization conditions, including the reaction temperature, the Fi/Ti molar ratio, and the structures of bi- or mononuclear Ti complexes were found to greatly influence the catalytic performances and the properties of obtained polymers. The polymers were characterized by differential scanning calorimetry (DSC), high temperature gel permeation chromatography (GPC) and high temperature 13C NMR spectroscopy, and found to contain ethyl, butyl, as well as some longer branches. The binuclear titanium complexes demonstrated excellent catalytic activity (up to 8.95 × 106 g/molTi·h·atm) and showed a strong positive comonomer effect when combined with the bisiminopyridyl Fe complex. The branching degree can be tuned from 2.53 to 22.89/1000C by changing the reaction conditions or using different copolymerization pre-catalysts. The melting points, crystallinity and molecular weights of the products can also be modified accordingly. The binuclear complex Ti2L1 with methylthio sidearm showed higher capability for comonomer incorporation and produced polymers with higher branching degree and much higher molecular weight compared with the mononuclear analogue. Full article
(This article belongs to the Special Issue Catalytic Olefin Polymerisation and Polyolefins)
Show Figures

Graphical abstract

14 pages, 2264 KiB  
Article
Effect of Graphene oxide or Functionalized Graphene Oxide on the Copolymerization Kinetics of Styrene/n-butyl Methacrylate
by Ioannis S. Tsagkalias, Afrodite Vlachou, George D. Verros and Dimitris S. Achilias
Polymers 2019, 11(6), 999; https://doi.org/10.3390/polym11060999 - 4 Jun 2019
Cited by 7 | Viewed by 3104
Abstract
Nanocomposite materials based on copolymers of styrene and n-butyl methacrylate with either graphene oxide (GO) or functionalized graphene oxide (F-GO) were synthesized using the in-situ bulk radical copolymerization technique. Reaction kinetics was studied both experimentally and theoretically using a detailed kinetic model also [...] Read more.
Nanocomposite materials based on copolymers of styrene and n-butyl methacrylate with either graphene oxide (GO) or functionalized graphene oxide (F-GO) were synthesized using the in-situ bulk radical copolymerization technique. Reaction kinetics was studied both experimentally and theoretically using a detailed kinetic model also taking into account the effect of diffusion-controlled phenomena on the reaction kinetic rate constants. It was found that the presence of GO results in lower polymerization rates accompanied by the synthesis of copolymers having higher average molecular weights. In contrast, the presence of F-GO did not seem to significantly alter the conversion vs time curves, whereas it results in slightly lower average molecular weights. The first observation was attributed to side reactions of the initiator primary radicals with the hydroxyl groups on the surface of GO, resulting in lower initiator efficiency, whereas the second to grafted structures formed from copolymer macromolecules on the F-GO surface. The copolymerization model predictions including MWD data were found to be in satisfactory agreement with the experimental data. At least four adjustable parameters were employed and their best-fit values were provided. Full article
(This article belongs to the Special Issue Kinetics of Polymerization Reactions)
Show Figures

Graphical abstract

30 pages, 6162 KiB  
Article
Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement
by Mariana Etcheverry and Silvia E. Barbosa
Materials 2012, 5(6), 1084-1113; https://doi.org/10.3390/ma5061084 - 18 Jun 2012
Cited by 205 | Viewed by 26627
Abstract
Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act [...] Read more.
Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers. Full article
(This article belongs to the Special Issue Fibre-Reinforced Composites)
Show Figures

Figure 1

Back to TopTop