Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = in-row tiller

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4579 KiB  
Article
Differentiated In-Row Soil Management in a High-Density Olive Orchard: Effects on Weed Control, Tree Growth and Yield, and Economic and Environmental Sustainability
by Enrico Maria Lodolini, Nadia Palmieri, Alberto de Iudicibus, Pompea Gabriella Lucchese, Matteo Zucchini, Veronica Giorgi, Samuele Crescenzi, Kaies Mezrioui, Davide Neri, Corrado Ciaccia and Alberto Assirelli
Agronomy 2024, 14(9), 2051; https://doi.org/10.3390/agronomy14092051 - 7 Sep 2024
Viewed by 1483
Abstract
Two different in-row soil management techniques were compared in the Olive Orchard Innovation Long-term experiment of the Council for Agricultural Research and Economics, Research Centre for Olive, Fruit, and Citrus Crops in Rome, Italy. Rows were managed with an in-row rotary tiller and [...] Read more.
Two different in-row soil management techniques were compared in the Olive Orchard Innovation Long-term experiment of the Council for Agricultural Research and Economics, Research Centre for Olive, Fruit, and Citrus Crops in Rome, Italy. Rows were managed with an in-row rotary tiller and with synthetic mulching using permeable polypropylene placed after cultivar Maurino olive trees planting. The effects of the two treatments were assessed through weed soil coverage and the growth of the olive trees. Results showed better agronomic performance associated with synthetic mulching. The weed control effect along the row of a young high-density olive orchard was higher with the synthetic mulching compared to hoeing. The effect of the synthetic mulching seemed to disappear when removed from the ground (spring 2023) since no significant differences were found for tree size and yield in the two tested in-row soil management systems at the end of 2023. Finally, the growth of the young olive trees (Trunk Cross Sectional Area, Height, and Canopy expansion) measured across the three years, was higher for the synthetic mulched row than the hoed one. The use of synthetic mulching along the row positively forced the vegetative growth of the young olive trees and anticipated the onset of fruit production compared to periodical hoeing: a significantly higher fruit production was registered three years after planting. Root diameter was higher under synthetic mulching one year after planting, and no differences were observed in the following sampling dates showing similar fluctuations linked to the seasonal growth pattern. The life cycle assessment and costing highlighted that the application of mulching had a higher eco- and economic-efficiency than the periodical in-row soil hoeing. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

15 pages, 1831 KiB  
Article
Organic Mulches as an Alternative to Conventional Under-Vine Weed Management in Mediterranean Irrigated Vineyards
by Carlos Cabrera-Pérez, Francisco Valencia-Gredilla, Aritz Royo-Esnal and Jordi Recasens
Plants 2022, 11(20), 2785; https://doi.org/10.3390/plants11202785 - 20 Oct 2022
Cited by 20 | Viewed by 3224
Abstract
Vineyard growth and grape yield can be significantly reduced by weeds, especially when these are located in the under-vine zone. Traditional weed management consists of recurrent tillage, which is associated with soil erosion and high fuel consumption, or herbicide applications, associated with damage [...] Read more.
Vineyard growth and grape yield can be significantly reduced by weeds, especially when these are located in the under-vine zone. Traditional weed management consists of recurrent tillage, which is associated with soil erosion and high fuel consumption, or herbicide applications, associated with damage to the environment and human health. In order to find alternative weed management methods, three field trials were carried out in Raimat (Lleida, NE Spain) with the aim of evaluating the suppressive effect of four mulches against weeds. Treatments included (1) straw mulch of Medicago sativa L., (2) straw mulch of Festuca arundinacea (L.) Schreb, (3) straw mulch of Hordeum vulgare L., (4) chopped pine wood mulch of Pinus sylvestris L., (5) mechanical cultivation and (6) herbicide application. The results showed that all mulches were efficient at controlling weeds (<20% of weed coverage) in the first year, compared with the two traditional methods, as long as the percentage of soil covered by mulches was high (>75%). In this way, pine mulch stood out above the straw mulches, as it achieved high soil cover during the three growing seasons of the study (>80%), with weed coverage values under 18%. This, together with the multiple benefits of mulches (improvements in the water balance and increases in soil organic matter, among others), make them a sustainable tool to be considered as an alternative to traditional under-vine weed management in vineyards. Full article
(This article belongs to the Special Issue New Methods and Innovative Strategies for Weed Management)
Show Figures

Figure 1

13 pages, 654 KiB  
Article
Herbicidal Effect of Different Alternative Compounds to Control Conyza bonariensis in Vineyards
by Carlos Cabrera-Pérez, Aritz Royo-Esnal and Jordi Recasens
Agronomy 2022, 12(4), 960; https://doi.org/10.3390/agronomy12040960 - 15 Apr 2022
Cited by 9 | Viewed by 3061
Abstract
Conyza bonariensis (L.) Cronquist is a widespread noxious weed with high fecundity, associated with no-till systems such as vineyards and other perennial crops in Mediterranean climates. Seeds germinate in staggered flushes, which leads to a great variation in the growth stage between individuals [...] Read more.
Conyza bonariensis (L.) Cronquist is a widespread noxious weed with high fecundity, associated with no-till systems such as vineyards and other perennial crops in Mediterranean climates. Seeds germinate in staggered flushes, which leads to a great variation in the growth stage between individuals in the same field, and chemical control becomes challenging. Besides, Conyza species have evolved resistance to herbicides worldwide, particularly to glyphosate. Even though tillage is expected to provide weed-free fields, it negatively affects vineyards, causing erosion, loss of soil structure and a reduction in organic matter or vine growth (shallow roots can be affected), among other effects. Fuel consumption of this management is also very high because recurrent interventions of in-row tiller are required. In this context, bioherbicides, defined as environmentally friendly natural substances intended to reduce weed populations, are a potential tool for integrated weed management (IWM). In this work, the herbicidal effect of the following six products is tested on a glyphosate-resistant C. bonariensis population present in commercial vineyards: T1, mixture of acetic acid 20% and the fertilizer N32; T2, mixture of potassium metabisulfite and pelargonic acid 31%; T3, pelargonic acid 68%; T4, humic-fulvic acid 80%; T5, hydroxy phosphate complex; and T6, potassium metabisulfite. The results showed high field efficacy for T1 and T4 (>80% biomass reduction). For the rest of the products, high efficacy was obtained only in dose–response greenhouse experiments. The present work demonstrates the potential of certain bioherbicide compounds to manage herbicide-resistant weed species, such as C. bonariensis. Therefore, bioherbicides could be successfully incorporated into vineyards for IWM. Full article
(This article belongs to the Special Issue Natural Compounds as Bioherbicide for an Eco-Friendly Agriculture)
Show Figures

Figure 1

Back to TopTop