Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = in-liquid QCM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4291 KiB  
Article
Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium
by Ioan Burda
Sensors 2022, 22(6), 2337; https://doi.org/10.3390/s22062337 - 17 Mar 2022
Cited by 15 | Viewed by 3718
Abstract
Technological evolution has allowed impedance analysis to become a versatile and efficient method for the precise measurement of the equivalent electrical parameters of the quartz crystal microbalance (QCM). By measuring the dissipation factor, or another equivalent electrical parameter, the QCM sensor provides access [...] Read more.
Technological evolution has allowed impedance analysis to become a versatile and efficient method for the precise measurement of the equivalent electrical parameters of the quartz crystal microbalance (QCM). By measuring the dissipation factor, or another equivalent electrical parameter, the QCM sensor provides access to the sample mass per unit area and its physical parameters, thus ensuring a detailed analysis. This paper aims to demonstrate the benefits of advanced impedance spectroscopy concerning the Butterworth–van Dyke (BVD) model for QCM sensors immersed with an electrode in a liquid medium. The support instrument in this study is a fast and accurate software-defined virtual impedance analyzer (VIA) with real-time computing capabilities of the QCM sensor’s electric model. Advanced software methods of self-calibration, real-time compensation, innovative post-compensation, and simultaneous calculation by several methods are the experimental resources of the results presented in this paper. The experimental results validate the theoretical concepts and demonstrate both the capabilities of VIA as an instrument and the significant improvements brought by the advanced software methods of impedance spectroscopy analysis related to the BVD model. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors)
Show Figures

Figure 1

16 pages, 4681 KiB  
Article
Quartz Crystal Microbalance with Impedance Analysis Based on Virtual Instruments: Experimental Study
by Ioan Burda
Sensors 2022, 22(4), 1506; https://doi.org/10.3390/s22041506 - 15 Feb 2022
Cited by 19 | Viewed by 4186
Abstract
The impedance quartz crystal microbalance (QCMI) is a versatile and simple method for making accurate measurements of the QCM sensor electrical parameters. The QCM sensor provides access to the physical parameters of the sample beyond the mass per unit area by measuring the [...] Read more.
The impedance quartz crystal microbalance (QCMI) is a versatile and simple method for making accurate measurements of the QCM sensor electrical parameters. The QCM sensor provides access to the physical parameters of the sample beyond the mass per unit area by measuring the dissipation factor, or another equivalent, ensuring a detailed analysis of the surface. By establishing a cooperative relationship between custom software and modular configurable hardware we obtain a user-defined measurement system that is called a virtual instrument. This paper aims primarily to improve and adapt existing concepts to new electronics technologies to obtain a fast and accurate virtual impedance analyzer (VIA). The second is the implementation of a VIA by software to cover a wide range of measurements for the impedance of the QCM sensor, followed by the calculation of the value of lumped electrical elements in real time. A method for software compensation of the parallel and stray capacitance is also described. The development of a compact VIA with a decent measurement rate (192 frequency points per second) aims, in the next development steps, to create an accurate impedance analyzer for QCM sensors. The experimental results show the good working capacity of QCMI based on VIA. Full article
(This article belongs to the Special Issue Advances in Acoustic Wave Biosensors)
Show Figures

Figure 1

23 pages, 5297 KiB  
Article
An Adaptive Measurement System for the Simultaneous Evaluation of Frequency Shift and Series Resistance of QCM in Liquid
by Ada Fort, Enza Panzardi, Valerio Vignoli, Marco Tani, Elia Landi, Marco Mugnaini and Pietro Vaccarella
Sensors 2021, 21(3), 678; https://doi.org/10.3390/s21030678 - 20 Jan 2021
Cited by 25 | Viewed by 4364
Abstract
In this paper, a novel measurement system based on Quartz Crystal Microbalances is presented. The proposed solution was conceived specifically to overcome the measurement problems related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor of the resonant system is [...] Read more.
In this paper, a novel measurement system based on Quartz Crystal Microbalances is presented. The proposed solution was conceived specifically to overcome the measurement problems related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor of the resonant system is severely reduced with respect to in-gas applications. The QCM is placed in a Meacham oscillator embedding an amplifier with adjustable gain, an automatic strategy for gain tuning allows for maintaining the oscillator frequency close to the series resonance frequency of the quartz, which is related in a simple way with the physical parameters of interest. The proposed system can be used to monitor simultaneously both the series resonant frequency and the equivalent electromechanical resistance of the quartz. The feasibility and the performance of the proposed method are proven by means of measurements obtained with a prototype based on a 10-MHz AT-cut quartz. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 5885 KiB  
Article
Topology Challenge for the Assessment of Living Cell Deposits with Shear Bulk Acoustic Biosensor
by Aleksandr Oseev, Nikolay Mukhin, Céline Elie-Caille, Wilfrid Boireau, Ralf Lucklum, Thomas Lecompte, Fabien Remy-Martin, Jean-François Manceau, Franck Chollet and Thérèse Leblois
Nanomaterials 2020, 10(10), 2079; https://doi.org/10.3390/nano10102079 - 21 Oct 2020
Cited by 7 | Viewed by 2790
Abstract
Shear bulk acoustic type of resonant biosensors, such as the quartz crystal microbalance (QCM), give access to label-free in-liquid analysis of surface interactions. The general understanding of the sensing principles was inherited from past developments in biofilms measurements and applied to cells while [...] Read more.
Shear bulk acoustic type of resonant biosensors, such as the quartz crystal microbalance (QCM), give access to label-free in-liquid analysis of surface interactions. The general understanding of the sensing principles was inherited from past developments in biofilms measurements and applied to cells while keeping the same basic assumptions. Thus, the biosensor readouts are still quite often described using ‘mass’ related terminology. This contribution aims to show that assessment of cell deposits with acoustic biosensors requires a deep understanding of the sensor transduction mechanism. More specifically, the cell deposits should be considered as a structured viscoelastic load and the sensor response depends on both material and topological parameters of the deposits. This shifts the paradigm of acoustic biosensor away from the classical mass loading perspective. As a proof of the concept, we recorded QCM frequency shifts caused by blood platelet deposits on a collagen surface under different rheological conditions and observed the final deposit shape with atomic force microscopy (AFM). The results vividly demonstrate that the frequency shift is highly impacted by the platelet topology on the bio-interface. We support our findings with numerical simulations of viscoelastic unstructured and structured loads in liquid. Both experimental and theoretical studies underline the complexity behind the frequency shift interpretation when acoustic biosensing is used with cell deposits. Full article
(This article belongs to the Special Issue Advanced Studies in Nano-BioAnalytical Physico-Chemistry)
Show Figures

Figure 1

8 pages, 1745 KiB  
Letter
The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance
by Xianhe Huang, Qingsong Bai, Qi Zhou and Jianguo Hu
Sensors 2017, 17(7), 1476; https://doi.org/10.3390/s17071476 - 22 Jun 2017
Cited by 12 | Viewed by 7530
Abstract
Due to the influence of liquid load, the equivalent resistance of in-liquid quartz crystal microbalance (QCM) increases sharply, and the quality factor and resonant frequency decreases. We found that the change in the resonant frequency of in-liquid QCM consisted of two parts: besides [...] Read more.
Due to the influence of liquid load, the equivalent resistance of in-liquid quartz crystal microbalance (QCM) increases sharply, and the quality factor and resonant frequency decreases. We found that the change in the resonant frequency of in-liquid QCM consisted of two parts: besides the frequency changes due to the mass and viscous load (which could be equivalent to motional inductance), the second part of frequency change was caused by the increase of motional resistance. The theoretical calculation and simulation proved that the increases of QCM motional resistance may indeed cause the decreases of resonant frequency, and revealed that the existence of static capacitance was the root cause of this frequency change. The second part of frequency change (due to the increases of motional resistance) was difficult to measure accurately, and may cause great error for in-liquid QCM applications. A technical method to reduce the interference caused by this effect is presented. The study contributes to the accurate determination of the frequency and amplitude change of in-liquid QCM caused by liquid load, which is significant for the QCM applications in the liquid phase. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

19 pages, 455 KiB  
Article
Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors
by Yeison Montagut, José V. García, Yolanda Jiménez, Carmen March, Ángel Montoya and Antonio Arnau
Sensors 2011, 11(5), 4702-4720; https://doi.org/10.3390/s110504702 - 28 Apr 2011
Cited by 34 | Viewed by 9826
Abstract
Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, [...] Read more.
Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs). However, this sensitivity improvement has not been completely matched in terms of limit of detection. The decrease on frequency stability due to the increase of the phase noise, particularly in oscillators, has made it impossible to increase the resolution. A new concept of sensor characterization at constant frequency has been recently proposed based on the phase/mass sensitivity equation: ∆φ/∆m ≈ −1/mL, where mL is the liquid mass perturbed by the resonator. The validation of the new concept is presented in this article. An immunosensor application for the detection of a low molecular weight pollutant, the insecticide carbaryl, has been chosen as a validation model. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

Back to TopTop