Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = in situ nanomechanical testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13479 KB  
Article
New Insights in the Nanomechanical Study of Carbon-Containing Nanocomposite Materials Based on High-Density Polyethylene
by Todor Batakliev, Evgeni Ivanov, Vladimir Georgiev, Verislav Angelov, Juan Ignacio Ahuir-Torres, David Mark Harvey and Rumiana Kotsilkova
Appl. Sci. 2024, 14(21), 9961; https://doi.org/10.3390/app14219961 - 31 Oct 2024
Viewed by 1485
Abstract
The investigation of new composite materials possessing low weight but not at the expense of their mechanical performance is of great interest in terms of reducing energy consumption in many industrial applications. This study is focused on the nanomechanical characterization of high-density polyethylene [...] Read more.
The investigation of new composite materials possessing low weight but not at the expense of their mechanical performance is of great interest in terms of reducing energy consumption in many industrial applications. This study is focused on the nanomechanical characterization of high-density polyethylene (HDPE)-based composite specimens modified with equal loadings of graphene nanoplatelets (GNPs) and/or multiwall carbon nanotubes (MWCNTs). Quasi-static nanoindentation analysis revealed the impact of the carbon nanofillers on the receiving of nanocomposites with higher nanohardness and reduced modulus of elasticity, reaching values of 0.146 GPa and 3.57 GPa, respectively. The role of the indentation size effect in elastic polymer matrix was assessed by applying three distinct peak forces. Nanoscratch experiments depicted the tribological behavior of the composite samples and inferred the influence of the carbon nanofillers on the values of the coefficient of friction (COF). It seems that the incorporation of 4 wt% GNPs in the polymer structure improves the scratch resistance of the material, resulting in a higher value of the exerted lateral force and therefore leading to the detection of a higher coefficient of friction at scratch of 0.401. A considerable pile-up response of the scratched polymer specimens was observed by means of in-situ SPM imaging of the tested surface sample area. The sway of the carbon nanoparticles on the composite pile-up behavior and the effect of the pile-up on the measured friction coefficients have been explored. Full article
Show Figures

Figure 1

13 pages, 9237 KB  
Article
In-Plane Liftout and Push-to-Pull for In Situ Mechanical Testing of Irradiated Inconel X-750
by Lucia R. Gomez-Hurtado, Tiankai Yao, Fei Teng, Mario D. Matos, Laura Hawkins, Ge Yang and Yachun Wang
Energies 2024, 17(17), 4199; https://doi.org/10.3390/en17174199 - 23 Aug 2024
Viewed by 1219
Abstract
A streamlined sample preparation method for nanomechanical testing is needed to improve the quality of specimens, reduce the cost, and increase the versatility of specimen fabrication. This work outlines an in-plane liftout focused ion beam (FIB) fabrication procedure to prepare electron-transparent specimens for [...] Read more.
A streamlined sample preparation method for nanomechanical testing is needed to improve the quality of specimens, reduce the cost, and increase the versatility of specimen fabrication. This work outlines an in-plane liftout focused ion beam (FIB) fabrication procedure to prepare electron-transparent specimens for in situ transmission electron microscopy (TEM) nanomechanical testing. Ion etching and electron backscatter diffraction (EBSD) techniques were used to lift out a [110] oriented grain from a neutron-irradiated bulk X-750 alloy. Careful control of voltages and currents ensured precision. Top surface thinning sweeps prevented resurfacing and redeposition while dog-bone geometries were shaped with a 1:4 gauge width-to-milling pattern diameter ratio. Nanotensile testing in the TEM with a picoindenter allowed for the estimation of an ultimate tensile strength of 2.41 GPa, and inspection revealed a high density of bubbles in the X-750 matrix. The proposed fabrication procedure is significant for preparing samples from radioactive materials, studying complex structures that are orientation-dependent, and analyzing desired planar areas. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

10 pages, 2530 KB  
Article
In Situ Observation of High Bending Strain Recoverability in Au Nanowires
by Lingyi Kong, Guang Cao, Haofei Zhou and Jiangwei Wang
Crystals 2023, 13(8), 1159; https://doi.org/10.3390/cryst13081159 - 26 Jul 2023
Cited by 3 | Viewed by 1748
Abstract
Metallic nanowires (NW) usually exhibit unique physical, mechanical, and chemical properties compared to their bulk counterparts. Despite extensive research on their mechanical behavior, the atomic-scale deformation mechanisms of metallic nanowires remain incompletely understood. In this study, we investigate the deformation behavior of Au [...] Read more.
Metallic nanowires (NW) usually exhibit unique physical, mechanical, and chemical properties compared to their bulk counterparts. Despite extensive research on their mechanical behavior, the atomic-scale deformation mechanisms of metallic nanowires remain incompletely understood. In this study, we investigate the deformation behavior of Au nanowires embedded with a longitudinal twin boundary (TB) under different loading rates using in situ nanomechanical testing integrated with atomistic simulations. The Au nanowires exhibit a recoverable bending strain of up to 27.5% with the presence of TBs. At low loading rates, the recoverable bending is attributed to the motion of stacking faults (SFs) and their interactions with TBs. At higher loading rates, the formation of high-angle grain boundaries and their reversible migration become dominant in Au nanowires. These findings enhance our understanding of the bending behavior of metallic nanowires, which could inspire the design of nanodevices with improved fatigue resistance and a large recoverable strain capacity. Full article
(This article belongs to the Special Issue Dislocations and Twinning in Metals and Alloys)
Show Figures

Figure 1

10 pages, 2092 KB  
Article
Interactions between Dislocations and Penta-Twins in Metallic Nanocrystals
by Yingbin Chen, Qishan Huang, Shuchun Zhao, Haofei Zhou and Jiangwei Wang
Metals 2021, 11(11), 1775; https://doi.org/10.3390/met11111775 - 4 Nov 2021
Cited by 6 | Viewed by 3564
Abstract
Dislocation interactions with twin boundary (TB) have been well-established in nanotwinned metals. Penta-twins, as an extreme of crystal twinning, are tacitly assumed to be more effective at blocking dislocation motions than conventional single or coplanar nanotwins. However, the mechanism underlying the interactions between [...] Read more.
Dislocation interactions with twin boundary (TB) have been well-established in nanotwinned metals. Penta-twins, as an extreme of crystal twinning, are tacitly assumed to be more effective at blocking dislocation motions than conventional single or coplanar nanotwins. However, the mechanism underlying the interactions between dislocations and penta-twins remains largely unclear. Here, by combining in situ transmission electron microscope (TEM) nanomechanical testing and atomistic simulations, we rationalize the fundamental interactions between dislocations and penta-twins in Au nanocrystals. Our results reveal that the interactions between dislocations and penta-twins show some similar behaviors to the ones in the cases of coplanar nanotwins, including dislocation impedance at TBs, cross-slip into the twinning plane and transmission across the TB. In addition, penta-twins also exhibit some unique behaviors during dislocation interactions, including multiple cross-slip, dislocation-induced core dissociation and climb-induced annihilation/absorption at the penta-twin core. These findings enhance our mechanistic understanding of dislocation behaviors in penta-twins, shedding light on the accessible design of high-performance nanomaterials with multi-twinned nanostructures. Full article
Show Figures

Figure 1

13 pages, 3109 KB  
Article
Proton Irradiation Effects on Hardness and the Volta Potential of Welding 308L Duplex Stainless Steel
by Baolong Jiang, Qunjia Peng, Zhijie Jiao, Alex A. Volinsky and Lijie Qiao
Micromachines 2019, 10(1), 11; https://doi.org/10.3390/mi10010011 - 25 Dec 2018
Cited by 7 | Viewed by 3336
Abstract
308L welding duplex stainless steel has been irradiated at 360 °C with 2 MeV protons, corresponding to a dose of 3 dpa at the maximum depth of 20 μm. Microhardness of the δ-ferrite and austenite phases was studied before and after proton irradiation [...] Read more.
308L welding duplex stainless steel has been irradiated at 360 °C with 2 MeV protons, corresponding to a dose of 3 dpa at the maximum depth of 20 μm. Microhardness of the δ-ferrite and austenite phases was studied before and after proton irradiation using in situ nanomechanical test system (ISNTS). The locations of the phases for indentations placement were obtained by scanning probe microscopy from the ISNTS. The hardness of the δ-ferrite had a close relationship with the vacancy distribution obtained from the Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulation code. However, the hardness of the austenite phase in the maximum damage region (17–20 μm depth) from the SRIM simulation was decreasing sharply, and a hardness transition region (>20 μm and <55 μm depth) was found between the maximum damage region (17–20 μm depth) and the unirradiated region (>20 μm depth). However, the δ-ferrite hardness behavior was different. A hardness of the two phases increased on the irradiated surface and the interior due to different hardening mechanisms in the austenite and δ-ferrite phases after a long time high-temperature irradiation. A transition region (>20 μm and <55 μm depth) of the Volta potential was also found, which was caused by the deeper transfer of implanted protons measured by scanning Kelvin probe force microscopy. Full article
Show Figures

Figure 1

14 pages, 6711 KB  
Article
Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air
by Cheng Li, Tian Lan, Xiyu Yu, Nan Bo, Jingyu Dong and Shangchun Fan
Nanomaterials 2017, 7(11), 366; https://doi.org/10.3390/nano7110366 - 4 Nov 2017
Cited by 17 | Viewed by 5156
Abstract
We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P) interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to [...] Read more.
We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P) interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality (Q) factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10−2 and 105 Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509–542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0–199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 105 kHz3/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials. Full article
(This article belongs to the Special Issue Graphene and Nanotube Based Devices)
Show Figures

Graphical abstract

9 pages, 5630 KB  
Article
Digital Micromirror Device (DMD)-Based High-Cycle Torsional Fatigue Testing Micromachine for 1D Nanomaterials
by Chenchen Jiang, Dayong Hu and Yang Lu
Micromachines 2016, 7(3), 49; https://doi.org/10.3390/mi7030049 - 14 Mar 2016
Cited by 19 | Viewed by 8549
Abstract
Fatigue behavior of nanomaterials could ultimately limit their applications in variable nano-devices and flexible nanoelectronics. However, very few existing nanoscale mechanical testing instruments were designed for dedicated fatigue experiments, especially for the challenging torsional cyclic loading. In this work, a novel high-cycle torsion [...] Read more.
Fatigue behavior of nanomaterials could ultimately limit their applications in variable nano-devices and flexible nanoelectronics. However, very few existing nanoscale mechanical testing instruments were designed for dedicated fatigue experiments, especially for the challenging torsional cyclic loading. In this work, a novel high-cycle torsion straining micromachine, based on the digital micromirror device (DMD), has been developed for the torsional fatigue study on various one-dimensional (1D) nanostructures, such as metallic and semiconductor nanowires. Due to the small footprint of the DMD chip itself and its cable-remote controlling mechanisms, it can be further used for the desired in situ testing under high-resolution optical or electron microscopes (e.g., scanning electron microscope (SEM)), which allows real-time monitoring of the fatigue testing status and construction of useful structure-property relationships for the nanomaterials. We have then demonstrated its applications for testing nanowire samples with diameters about 100 nm and 500 nm, up to 1000 nm, and some of them experienced over hundreds of thousands of loading cycles before fatigue failure. Due to the commercial availability of the DMD and millions of micromirrors available on a single chip, this platform could offer a low-cost and high-throughput nanomechanical solution for the uncovered torsional fatigue behavior of various 1D nanostructures. Full article
(This article belongs to the Special Issue Micro/Nano Robotics)
Show Figures

Graphical abstract

14 pages, 1201 KB  
Article
Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator
by Hu Huang, Hongwei Zhao, Zhaojun Yang, Zunqiang Fan, Shunguang Wan, Chengli Shi and Zhichao Ma
Sensors 2012, 12(7), 9697-9710; https://doi.org/10.3390/s120709697 - 17 Jul 2012
Cited by 18 | Viewed by 9050
Abstract
Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static [...] Read more.
Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. Full article
(This article belongs to the Special Issue Ultra-Small Sensor Systems and Components)
Show Figures

Back to TopTop