Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = impressed voltage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2082 KiB  
Article
A Bipyridine-Ester Dual-Modified 2,2,6,6-Tetramethylpiperidin-1-oxyl Derivative for Aqueous Organic Redox Flow Batteries
by Qianqian Zheng, Yanwen Ren, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(12), 2770; https://doi.org/10.3390/ma18122770 - 12 Jun 2025
Viewed by 511
Abstract
The transition to renewable energy makes energy storage crucial. Aqueous organic redox flow batteries (AORFBs) show great potential in large-scale energy storage due to their outstanding safety compared to conventional systems. Derivatives of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) show significant promise as catholyte materials in AORFBs. [...] Read more.
The transition to renewable energy makes energy storage crucial. Aqueous organic redox flow batteries (AORFBs) show great potential in large-scale energy storage due to their outstanding safety compared to conventional systems. Derivatives of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) show significant promise as catholyte materials in AORFBs. In this work, a bipyridine-ester dual-modified TEMPO derivative, (2,2,6,6-tetramethyl-1-piperidinyloxy)carbonyl-ethyl-(4-(pyridin-4-yl)benzyl) ammonium bromide (TEMP-BPy) was successfully synthesized via a two-step functionalization. The synthesized compound was experimentally confirmed to possess excellent electrochemical stability. The electron-withdrawing effect of the 4,4′-bipyridine moiety elevates the redox potential by 60 mV. When implemented as a catholyte paired with methyl viologen (MV) as the anolyte in AORFB, the TEMP-BPy/MV system demonstrates excellent performance: achieving a cell voltage of 1.28 V and an energy density of 14.5 Wh L−1 at a 0.6 M (16.08 Ah L−1) concentration with 71.3% material utilization. Notably, it demonstrates exceptional cycling stability with an average capacity retention of 99.86% per cycle over 200 cycles, and it exhibits particularly impressive initial stability, with an average capacity retention of 99.997% per cycle during the first 100 cycles. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

15 pages, 3620 KiB  
Article
ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting
by Lanqi Wang, Hui Ni, Jianing Yu, Jingyuan Zhang and Bin Zhao
Catalysts 2025, 15(6), 576; https://doi.org/10.3390/catal15060576 - 10 Jun 2025
Viewed by 1018
Abstract
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a [...] Read more.
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a hierarchical structure was synthesized using the Prussian blue analogue (PBA)/zeolitic imidazolate framework-L (ZIF-L) template. Benefiting from the hierarchical structure of the PBA/ZIF-L precursor and the electronic structure modulation induced by Ni doping, the resulting CoFeNi0.2P demonstrates impressive bifunctional electrocatalytic activity. Specifically, in 1 M KOH electrolyte, the CoFeNi0.2P catalyst requires an overpotential of only 88 mV to deliver 10 mA cm−2 for the HER and 248 mV to achieve 50 mA cm−2 for the OER. Moreover, it demonstrates satisfactory stability toward both the HER and OER. When integrated into a two-electrode electrolyzer, CoFeNi0.2P enables a current density of 10 mA cm−2 at a cell voltage of 1.59 V, maintaining robust performance for over 25 h. This study provides a feasible strategy for the rational design of hierarchical electrocatalysts for efficient overall water splitting. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

15 pages, 5997 KiB  
Article
Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors
by Baichuan Zhang, Libin Gao, Hongwei Chen and Jihua Zhang
Nanomaterials 2025, 15(11), 819; https://doi.org/10.3390/nano15110819 - 28 May 2025
Viewed by 403
Abstract
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through [...] Read more.
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through anodic oxidation. After undergoing high-temperature thermal oxidation, a monolithic Ni-NiO-Pt metal–insulator–metal (MIM) capacitor with a nanoporous dielectric architecture is achieved. Structurally, this innovative design brings about several remarkable benefits. Due to the nanoporous structure, it has a significantly increased surface area, which can effectively store more charges. As a result, it exhibits an equivalent capacitance density of 69.95 nF/cm2, which is approximately 18 times higher than that of its planar, non-porous counterpart. This high capacitance density enables it to store more electrical energy in a given volume, making it highly suitable for applications where miniaturization and high energy storage in a small space is crucial. The second type of capacitor makes use of Through-Glass Via (TGV) technology. This technology is employed to create an interdigitated blind-via array within a glass substrate, attaining an impressively high aspect ratio of 22.5:1 (with a via diameter of 20 μm and a depth of 450 μm). By integrating atomic layer deposition (ALD), a conformal interdigital electrode structure is realized. Glass, as a key material in this capacitor, has outstanding insulating properties. This characteristic endows the capacitor with a high breakdown field strength exceeding 8.2 MV/cm, corresponding to a withstand voltage of 5000 V. High breakdown field strength and withstand voltage mean that the capacitor can handle high-voltage applications without breaking down easily, which is essential for power-intensive systems like high-voltage power supplies and some high-power pulse-generating equipment. Moreover, due to the low-loss property of glass, the capacitor can achieve an energy conversion efficiency of up to 95%. Such a high energy conversion efficiency ensures that less energy is wasted during the charge–discharge process, which is highly beneficial for energy-saving applications and systems that require high-efficiency energy utilization. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 5504 KiB  
Article
Boosting Electrochemical Performances of Li-Rich Mn-Based Cathode Materials by La Doping via Enhanced Structural Stability
by Shumei Dou, Bo Li, Zhuolu Guo, Ruoxin Teng, Lijun Ren, Huiqin Li, Weiwei Zhao and Fenyan Wei
Coatings 2025, 15(6), 643; https://doi.org/10.3390/coatings15060643 - 26 May 2025
Viewed by 481
Abstract
La-doped Li1.2Ni0.13Mn0.54Co0.13O2 cathode materials were successfully synthesized by the sol-gel method. The structure, morphology, element valence states, cyclic voltammetry, and cyclic properties were characterized to investigate the properties of the synthesized materials. The as-prepared [...] Read more.
La-doped Li1.2Ni0.13Mn0.54Co0.13O2 cathode materials were successfully synthesized by the sol-gel method. The structure, morphology, element valence states, cyclic voltammetry, and cyclic properties were characterized to investigate the properties of the synthesized materials. The as-prepared La-doped Li1.2Ni0.13Mn0.54Co0.13O2 materials exhibit well the crystalline hexagonal layered structures with lamellar-like particles featuring a rough surface. The optimal sample, designated as LLRMO-2 with 1/100 La3+ doping, delivers an impressive discharge capacity of 271.2 mAh g−1 with a capacity retention of 87.8% after 100 cycles at the current density of 100 mA g−1 compared with that of 203.5 mAh g−1 with only 110.6 mAh g−1 after 100 cycles for the pristine sample. Furthermore, the LLRMO-2 cathode exhibits a superior rate capability compared to the pristine sample and shows excellent cyclic performances with the capacity retention of 48.1% after 400 cycles. The voltage decay per cycle is only 1.60 mV, which is less than 3.70 mV of the pristine one. The enhanced capacity, rate capability, and cyclic performance observed in the La-doped Li-rich layered cathode can be attributed to the improved structural stability as well as the higher diffusion coefficient of lithium ions. These results suggest that the strategy of introducing La3+ into the transition metal slabs is an efficient approach for boosting electrochemical performances of Li-rich Mn-based cathode materials via enhancing structural stability. Full article
Show Figures

Figure 1

14 pages, 5171 KiB  
Article
Cobalt-Decorated Carbonized Wood as an Efficient Electrocatalyst for Water Splitting
by Zichen Cheng, Zekun Li, Shou Huang, Junfan Pan, Jiaxian Mei, Siqi Zhang, Xingyu Peng, Wen Lu and Lei Yan
Catalysts 2025, 15(5), 503; https://doi.org/10.3390/catal15050503 - 21 May 2025
Viewed by 724
Abstract
The efficient mass transport and enhanced accessibility of active sites are crucial for high-performance electrocatalysts in water splitting. Inspired by the hierarchical structure of natural wood, we engineered a monolithic electrocatalyst, cobalt nanoparticles encapsulated in nitrogen-doped carbon layers on carbonized wood (Co@NC/CW), by [...] Read more.
The efficient mass transport and enhanced accessibility of active sites are crucial for high-performance electrocatalysts in water splitting. Inspired by the hierarchical structure of natural wood, we engineered a monolithic electrocatalyst, cobalt nanoparticles encapsulated in nitrogen-doped carbon layers on carbonized wood (Co@NC/CW), by carbonizing wood to create a three-dimensional framework with vertically aligned macropores. The unique architecture encapsulates cobalt nanoparticles within in situ-grown nitrogen-doped graphene layers on wood-derived microchannels, facilitating ultrafast electrolyte infusion and anisotropic electron transport. As a result, the optimized freestanding Co@NC/CW electrode exhibits remarkable bifunctional activity, achieving overpotentials of 403 mV and 227 mV for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, at a current density of 50 mA cm−2. Furthermore, the integrated hybrid electrolyzer combining the HER and the OER delivers an impressive 50 A cm−2 at a cell voltage of 1.72 V while maintaining a Faradaic efficiency near 99.5% and sustaining long-term stability over 120 h of continuous operation. Co@NC/CW also demonstrates performance in the complete decomposition of alkaline seawater, underscoring its potential for scalable applications. This wood-derived catalyst design not only leverages the natural hierarchical porosity of wood but also offers a sustainable platform for advanced electrochemical systems. Full article
(This article belongs to the Special Issue Recent Progress on Electrocatalytic Hydrogen Evolution Reaction)
Show Figures

Graphical abstract

22 pages, 1576 KiB  
Article
Robust Data-Driven State of Health Estimation of Lithium-Ion Batteries Based on Reconstructed Signals
by Byron Alejandro Acuña Acurio, Diana Estefanía Chérrez Barragán, Juan Carlos Rodríguez, Felipe Grijalva and Luiz Carlos Pereira da Silva
Energies 2025, 18(10), 2459; https://doi.org/10.3390/en18102459 - 11 May 2025
Viewed by 1167
Abstract
The state of health (SoH) of lithium-ion batteries is critical for diagnosing the actual capacity of the battery. Data-driven methods have achieved impressive accuracy, but their sensitivity to sensor noise, missing samples, and outliers remains a limitation for their deployment. This paper proposes [...] Read more.
The state of health (SoH) of lithium-ion batteries is critical for diagnosing the actual capacity of the battery. Data-driven methods have achieved impressive accuracy, but their sensitivity to sensor noise, missing samples, and outliers remains a limitation for their deployment. This paper proposes a robust, purely data-driven SoH estimation methodology that addresses these challenges. Our method uses a proposed non-iterative closed-form signal reconstruction derived from a modified Tikhonov regularization. Five new features were extracted from reconstructed voltage and temperature discharge profiles. Finally, a Huber regression model is trained using these features for SoH estimation. Six ageing scenarios built from the public NASA and Sandia National Laboratories datasets, under severe Gaussian noise conditions (10 dB SNR), were employed to validate our proposed approach. In noisy environments and with limited training data, our proposed approach maintains a competitive accuracy across all scenarios, achieving low error metrics, with an RMSE on the order of 104, an MAE on the order of 102, and a MAPE below 1%. It outperforms state-of-the-art deep neural networks, direct-feature Huber models, and hybrid physics/data-driven models. In this work, we demonstrate that robustness in SoH estimation for lithium-ion batteries is influenced by the choice of machine learning architecture, loss function, feature selection, and signal reconstruction technique. In addition, we found that tracking the time to minimum discharge voltage and the time to maximum discharge temperature can be used as effective features to estimate SoH in data-driven models, as they are directly correlated with capacity loss and a decrease in power output. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

12 pages, 8366 KiB  
Article
Active Poly(o-phenylenediamine)-Intercalated Layered δ-MnO2 Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Ziqian Yuan, Bosi Yin, Wenhui Mi, Minghui Liu and Siwen Zhang
Polymers 2025, 17(8), 1003; https://doi.org/10.3390/polym17081003 - 8 Apr 2025
Cited by 1 | Viewed by 599
Abstract
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive [...] Read more.
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive theoretical specific capacity, suitable operating voltage, and abundant natural availability. In published reports, pre-embedding is frequently used to modify the layered cathode; however, non-electrochemically active molecular embedding often results in a decrease in battery capacity. In this paper, a hydrothermal method is employed to intercalate poly(o-phenylenediamine) (PoPD) into δ-MnO2 (MO) to produce PoPD-MO cathode materials. Here, PoPD serves a dual role in the cathode: (1) PoPD is inserted into the interlayer of MO, providing support within the intercalation layer, enhancing material stability, increasing ionic storage sites, and creating space for more Zn2+ to be embedded, and (2) inserting PoPD into the interlayer structure of MO effectively expands the space between layers, thus allowing for greater ion storage, which in turn enhances the rate and efficiency of electrochemical reactions. Consequently, PoPD-MO shows remarkable cycling durability and adaptability in ZIBs, achieving a specific capacity of 359 mAh g−1 at a current density of 0.1 A g−1, and even under the strain of a high current density of 3 A g−1, it maintains a respectable capacity of 107 mAh g−1. Based on this, PoPD-MO may emerge as a new cathode material with promising applications in the future. Full article
(This article belongs to the Special Issue Polymeric Conductive Materials for Energy Storage)
Show Figures

Figure 1

12 pages, 4129 KiB  
Article
Structural Design of Dry-Processed Lithium-Rich Mn-Based Materials with High Loading for Enhanced Energy Density
by Yujie Ma, Haojin Guo, Tai Yang and Zhifeng Wang
Batteries 2025, 11(4), 146; https://doi.org/10.3390/batteries11040146 - 7 Apr 2025
Cited by 1 | Viewed by 671
Abstract
With the growing demand for electric vehicles and consumer electronics, lithium-ion batteries with a high energy density are urgently needed. Lithium-rich manganese-based materials (LRMs) are known for their high theoretical specific capacity, rapid electron/ion transfer, and high output voltage. Constructing electrodes with a [...] Read more.
With the growing demand for electric vehicles and consumer electronics, lithium-ion batteries with a high energy density are urgently needed. Lithium-rich manganese-based materials (LRMs) are known for their high theoretical specific capacity, rapid electron/ion transfer, and high output voltage. Constructing electrodes with a substantial amount of active materials is a viable method for enhancing the energy density of batteries. In this study, we prepare thick LRM electrodes through a dry process method of binder fibrillation. A point-to-line-to-surface three-dimensional conductive network is designed by carbon agents with various morphologies. This structural design improves conductivity and facilitates efficient ion and electron transport due to close particle contact and tight packing. A high-loading cathode (35 mg cm−2) is fabricated, achieving an impressive areal capacity of up to 7.9 mAh cm−2. Moreover, the pouch cell paired with a lithium metal anode exhibits a remarkable energy density of 949 Wh kg−1. Compared with the cathodes prepared by the wet process, the dry process optimizes the pathways for e/Li+ transport, leading to reduced resistance, superior coulombic efficiency, retention over cycling, and minimized side reaction. Therefore, the novel structural adoption of the dry process represents a promising avenue for driving innovation and pushing the boundaries for enhanced energy density for batteries. Full article
Show Figures

Figure 1

18 pages, 5668 KiB  
Article
Low-Voltage Series Arc Fault Detection Based on Multi-Feature Fusion and Improved Residual Network
by Haitao Wang, Juyuan Kang and Yigang Lin
Electronics 2025, 14(7), 1325; https://doi.org/10.3390/electronics14071325 - 27 Mar 2025
Viewed by 472
Abstract
Deep learning-based image classification techniques have been widely utilized in low-voltage AC series-type fault arc detection. However, the transformation of signals into images frequently leads to significant loss of current signal characteristics, thereby compromising arc recognition accuracy. Additionally, uncharacterized signal content may be [...] Read more.
Deep learning-based image classification techniques have been widely utilized in low-voltage AC series-type fault arc detection. However, the transformation of signals into images frequently leads to significant loss of current signal characteristics, thereby compromising arc recognition accuracy. Additionally, uncharacterized signal content may be lost due to multiple factors, including sensor bandwidth limitations, sensor-event distance, and the topological configuration of the circuit where the fault originated. To address this challenge, a novel framework for identifying series-type low-voltage AC fault arcs is presented, which integrates the Markov transfer field (MTF) with multi-feature fusion and an improved residual neural network (ResNet18). This approach employs fast Fourier transform (FFT) to compute magnitude and phase data and then converts the original current signals, magnitude spectrograms, and phase spectrograms into MTF images. An adaptive weighted averaging strategy is subsequently applied to fuse these MTF images, generating composite discriminative features that preserve both amplitude and phase information from the original signals. The proposed system incorporates a convolutional block-based attention mechanism (CBAM) into the ResNet18 architecture to enhance feature representation while reducing training complexity. Extensive experimental evaluations on a diverse dataset demonstrate that the developed method achieves an impressive recognition accuracy of 99.88% for series fault arcs. This result validates the effectiveness of the proposed framework in maintaining critical signal characteristics and improving detection precision compared to existing approaches. Full article
Show Figures

Figure 1

17 pages, 7253 KiB  
Article
Electrochromic Fabrics with Horizontal Patterning, Enhanced Strength, Comfort, High-Temperature Protection, and Long Coloring Retention Properties for Adaptive Camouflage
by Jingjing Wang, Haiting Shi, Jixian Gong, Geng Tian and Jinbo Yao
Molecules 2025, 30(6), 1249; https://doi.org/10.3390/molecules30061249 - 11 Mar 2025
Viewed by 1349
Abstract
Electrochromic fabrics (ECFs) can be applied to wearable displays and military camouflage clothing, and they have great potential in developing wearable products. Current ECFs are often bulky, involve complicated processes, and have high production costs. In this study, we report a novel strategy [...] Read more.
Electrochromic fabrics (ECFs) can be applied to wearable displays and military camouflage clothing, and they have great potential in developing wearable products. Current ECFs are often bulky, involve complicated processes, and have high production costs. In this study, we report a novel strategy for preparing electrochromic fabrics that require only a three-layer structure: cotton fabric as the substrate, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the electrochromic layer and the electrodes, and an ion-conducting film (ICF) bonded to the fabric by hot pressing. Compared with conventional ECFs, this method does not require the extra preparation of electrode layers on the fabric, as these layers affect the color-changing effect. Hot pressing eliminates the need for a complex sealing process and is more suitable for fabrics with poor wicking effects, which increases the method’s applicability. Cotton fabrics offer the value of biodegradability and are more environmentally friendly. Meanwhile, unlike carbon cloth, the fabric’s color does not interfere with the electrochromic effect. The ICF is non-liquid and can maintain the dryness of the fabric. Additionally, the ICF provides high-temperature protection up to 150 °C. The ECFs exhibit exceptional thinness at 161 µm and a lightweight construction with a 0.03 g/cm2 weight. Furthermore, the ECFs exhibit a relatively long sustain time of 115 min without voltage, demonstrating impressive performance. Improved peel strength to 7.11 N is achieved through an improved hot-pressing process. The development strategy for ECFs can also be applied to other electrochromic substances, potentially advancing intelligent applications such as wearable fabrics and military camouflage while promoting rapid progress in electrochromic fabrics. Full article
Show Figures

Figure 1

25 pages, 26700 KiB  
Article
Power Tracking and Performance Analysis of Hybrid Perturb–Observe, Particle Swarm Optimization, and Fuzzy Logic-Based Improved MPPT Control for Standalone PV System
by Ali Abbas, Muhammad Farhan, Muhammad Shahzad, Rehan Liaqat and Umer Ijaz
Technologies 2025, 13(3), 112; https://doi.org/10.3390/technologies13030112 - 8 Mar 2025
Cited by 1 | Viewed by 1557
Abstract
The increasing energy demand and initiatives to lower carbon emissions have elevated the significance of renewable energy sources. Photovoltaic (PV) systems are pivotal in converting solar energy into electricity and have a significant role in sustainable energy production. Therefore, it is critical to [...] Read more.
The increasing energy demand and initiatives to lower carbon emissions have elevated the significance of renewable energy sources. Photovoltaic (PV) systems are pivotal in converting solar energy into electricity and have a significant role in sustainable energy production. Therefore, it is critical to implement maximum power point tracking (MPPT) controllers to optimize the efficiency of PV systems by extracting accessible maximum power. This research investigates the performance and comparison of various MPPT control algorithms for a standalone PV system. Several cases involving individual MPPT controllers, as well as hybrid combinations using two and three controllers, have been simulated in MATLAB/SIMULINK. The sensed parameters, i.e., output power, voltage, and current, specify that though individual controllers effectively track the maximum power point, hybrid controllers achieve superior performance by utilizing the combined strengths of each algorithm. The results indicate that individual MPPT controllers, such as perturb and observe (P&O), particle swarm optimization (PSO), and fuzzy logic (FL), achieved tracking efficiencies of 97.6%, 90.3%, and 90.1%, respectively. In contrast, hybrid dual controllers such as P&O-PSO, PSO-FL, and P&O-FL demonstrated improved performance, with tracking efficiencies of 96.8%, 96.4%, and 96.5%, respectively. This research also proposes a new hybrid triple-MPPT controller combining P&O-PSO-FL, which surpassed both individual and dual-hybrid controllers, achieving an impressive efficiency of 99.5%. Finally, a comparison of all seven cases of MPPT control algorithms is presented, highlighting the advantages and disadvantages of individual as well as hybrid approaches. Full article
Show Figures

Figure 1

23 pages, 5126 KiB  
Article
Integration of Conductive SnO2 in Binary Organic Solar Cells with Fine-Tuned Nanostructured D18:L8-BO with Low Energy Loss for Efficient and Stable Structure by Optoelectronic Simulation
by Mohamed El Amine Boudia and Cunlu Zhao
Nanomaterials 2025, 15(5), 368; https://doi.org/10.3390/nano15050368 - 27 Feb 2025
Viewed by 1217
Abstract
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend [...] Read more.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons. The research incorporates SnO2 and ZnO as electron transport layers (ETLs), with PMMA functioning as a hole transport layer (HTL). A comprehensive analysis of photon absorption, charge carrier generation, localized energy fluctuations, and thermal stability reveals their critical role in enhancing the efficiency of D18:L8-BO active films. Notably, introducing SnO2 as an ETL significantly decreased losses and modified localized energy, achieving an impressive efficiency of 19.85% at an optimized blend thickness of 50 nm with low voltage loss (ΔVoc) of 0.4 V within a Jsc of 28 mA cm−2 by performing an optoelectronic simulation employing “Oghma-Nano 8.1.015” software. In addition, the SnO2-based structure conserved 88% of the PCE at 350 K compared to room temperature PCE, which describes the high thermal stability of this structure. These results demonstrate the potential of this methodology in improving the performance of OSCs. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

25 pages, 7034 KiB  
Article
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM
by Yuhao Ai, Bin Song, Shaocheng Wu, Yongwen Li, Li Lu and Linong Wang
Sensors 2025, 25(2), 590; https://doi.org/10.3390/s25020590 - 20 Jan 2025
Viewed by 999
Abstract
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath [...] Read more.
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable. Firstly, this paper performed a theoretical analysis of the sheath current in the reversed-connection state and established a simulation model for verification. The outcomes of the simulation demonstrate that there are significant variations in the amplitudes of the sheath current under different reversed-connection conditions. Consequently, a feature vector was devised based on the amplitude of the sheath current. The support vector machine (SVM) was then applied to diagnose the reversed-connection defects in the HV cable cross-bonded grounding system. The artificial rabbits optimization (ARO) algorithm was adopted to optimize the SVM model, attaining an impressively high diagnostic accuracy rate of 99.35%. The effectiveness and feasibility of the proposed algorithm are confirmed through the analysis and validation of the practical example. Full article
Show Figures

Figure 1

22 pages, 8704 KiB  
Article
Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation
by Nawal Al Abass, Talal F. Qahtan, Amani M. Alansi, Almqdad Bubshait, Maria Al-Ghamdi, Zahra Albu, Noof Soltan Albasiry, Hisham Mohammed Aljahfal, Abdulrahman E. Aldossary and Mohammed Tariq Faraj
Materials 2025, 18(2), 444; https://doi.org/10.3390/ma18020444 - 19 Jan 2025
Cited by 2 | Viewed by 1237
Abstract
With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic [...] Read more.
With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment. The electrode exhibited a high photocurrent density of 1.18 mA/cm2 at 1.23 V vs. RHE and achieved a solar-to-hydrogen conversion efficiency of 0.55%. A key factor behind this performance is the presence of surface defects, such as oxygen vacancies (OVs), which enhanced charge separation and boosted electron transport. In tests for waste water treatment, the Zn/ZnO-5 min electrode demonstrated the highly efficient degradation of methylene blue (MB) dye, with a reaction rate constant of 0.4211 min−1 when exposed to light and a 1.0 V applied voltage significantly faster than using light or voltage alone. Electrochemical analyses, including impedance spectroscopy and voltammetry, further confirmed the superior charge transfer properties of the electrode under illumination, making it an excellent candidate for both energy conversion and pollutant removal. This study highlights the potential of using simple anodic oxidation to produce scalable and efficient ZnO-based photocatalysts. The dual-function capability of this material could pave the way for large-scale applications in renewable hydrogen production and advanced waste water treatment, offering a promising solution to some of today’s most pressing environmental and energy challenges. Full article
Show Figures

Graphical abstract

13 pages, 6455 KiB  
Article
4,4′,4″-Tris(Diphenylamino)Triphenylamine: A Compatible Anion Host in Commercial Li-Ion Electrolyte for Dual-Ion Batteries
by Jiulong Che, Jian Zhang, Qing Lang, Jiayuan Yu, Yixiao Yang, Longqi Luo, Zhiyi Liu, Jiahui Ye and Gang Wang
Processes 2025, 13(1), 232; https://doi.org/10.3390/pr13010232 - 15 Jan 2025
Viewed by 884
Abstract
Dual-ion batteries (DIBs) were demonstrated as a promising technology for large-scale energy storage due to their low cost, recyclability, and impressively fast charge capability. Graphite as a commonly used cathode material in DIBs, however, suffers from poor compatibility with commercial Li-ion electrolytes and [...] Read more.
Dual-ion batteries (DIBs) were demonstrated as a promising technology for large-scale energy storage due to their low cost, recyclability, and impressively fast charge capability. Graphite as a commonly used cathode material in DIBs, however, suffers from poor compatibility with commercial Li-ion electrolytes and graphite anodes, making it difficult to directly utilize the well-established infrastructure for Li-ion batteries. Herein, we report a small aromatic amine molecule 4,4′,4″-tris(diphenylamino)triphenylamine (N4) functioning as a compatible anion host in the EC-containing Li-ion electrolyte. With an average discharge voltage of 3.6 V (vs. Li+/Li), the N4 electrode delivers a reversible specific capacity of 108 mAh/g, which is much higher than 29 mAh/g for the graphite cathode at the same condition. The high capacity retention of 91.3% was achieved after 500 cycles at 1 A/g. The N4 electrode also exhibited good rate performance. Via different characterization techniques like Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, the energy storage mechanism of N4 was revealed as a conversion between amine and quaternary amine cations, accompanied by PF6 (de-)insertion. As consequences, the assembled N4||graphite DIB w showed a high discharge capacity of 90 mAh/g within 1.5–4.1 V, and good cycling stability with a 98% capacity retention after 40 cycles. Decent rate performance was achieved in the N4||graphite DIB as well. This work provides new insights into designing a compatible anion host for affordable DIBs. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop