Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (843)

Search Parameters:
Keywords = impaired driving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4317 KB  
Article
Natural Genetic Variation Impacts Stress-Induced Quiescence and Regeneration in Response to Rapamycin
by Sahiti Peddibhotla, Miriam Gonzaga, Tricia Zhang, Yasha Goel, Jun Sun, Benjamin R. Harrison, Daniel E. L. Promislow and Hannele Ruohola-Baker
Cells 2026, 15(3), 236; https://doi.org/10.3390/cells15030236 - 26 Jan 2026
Abstract
In response to ionizing radiation (IR), both adult and cancer stem cells enter reversible cell cycle arrest at the G1/S transition to evade apoptosis and subsequently re-enter the cell cycle to regenerate damaged tissue. Entry into and exit from this arrest, known as [...] Read more.
In response to ionizing radiation (IR), both adult and cancer stem cells enter reversible cell cycle arrest at the G1/S transition to evade apoptosis and subsequently re-enter the cell cycle to regenerate damaged tissue. Entry into and exit from this arrest, known as “quiescence,” is governed by the inhibition of mTORC1. The pharmacological suppression of mTORC1 with rapamycin prevents quiescent stem cells from re-entering the cell cycle and impairs tissue regeneration. Rapamycin holds great therapeutic promise in preventing tumor regrowth from dormant cancer stem cells. Yet the extent to which genetic background impacts the known variation in the pharmacological response of rapamycin remains unknown. Here, we show that natural genetic variation across the Drosophila Genetics Reference Panel (DGRP) drives substantial differences in the rapamycin-mediated suppression of post-IR quiescence and regeneration. To define the basis of this differential sensitivity, we examined mitochondrial turnover and DNA damage repair—processes controlling IR-induced dormancy. Our analyses reveal that variation in rapamycin sensitivity is more strongly associated with differences in mitochondrial dynamics than with DNA damage response following radiation. Together, these findings demonstrate that genetic background is a critical determinant of rapamycin efficacy and identify mitochondrial regulation as a key mechanism underlying differential therapeutic response. Full article
(This article belongs to the Special Issue Genetics and Gene Regulation)
Show Figures

Figure 1

13 pages, 234 KB  
Article
Disparities in Survival After In-Hospital Cardiac Arrest by Time of Day and Day of Week: A Single-Center Cohort Study
by Maria Aggou, Barbara Fyntanidou, Marios G. Bantidos, Andreas S. Papazoglou, Athina Nasoufidou, Aikaterini Apostolopoulou, Christos Kofos, Alexandra Arvanitaki, Nikolaos Vasileiadis, Dimitrios Vasilakos, Haralampos Karvounis, Konstantinos Fortounis, Eleni Argyriadou, Efstratios Karagiannidis and Vasilios Grosomanidis
J. Clin. Med. 2026, 15(3), 987; https://doi.org/10.3390/jcm15030987 (registering DOI) - 26 Jan 2026
Abstract
Background: In-hospital cardiac arrest (IHCA) constitutes a high-impact clinical event, associated with substantial mortality, frequent neurological and functional impairment. There is a pressing need for primary IHCA studies that evaluate risk predictors, given the inherent challenges of IHCA data collection, previously unharmonized reporting [...] Read more.
Background: In-hospital cardiac arrest (IHCA) constitutes a high-impact clinical event, associated with substantial mortality, frequent neurological and functional impairment. There is a pressing need for primary IHCA studies that evaluate risk predictors, given the inherent challenges of IHCA data collection, previously unharmonized reporting frameworks, and the predominant focus of prior investigations on other domains. Among potential contributors, the “off-hours effect” has consistently been linked to poorer IHCA outcomes. Accordingly, we sought to examine whether in-hospital mortality after IHCA varies according to the time and day of occurrence within a tertiary academic center in Northern Greece. Methods: We conducted a single-center observational cohort study using a prospectively maintained in-hospital resuscitation registry at AHEPA University General Hospital, Thessaloniki. All adults with an index IHCA between 2017 and 2019 were included, and definitions followed Utstein-style recommendations. Results: Multivariable logistic regression adjusted for organizational, patient, and process-of-care factors demonstrated that afternoon/night arrests, weekend arrests, heart failure comorbidity, and need for mechanical ventilation were independent predictors of higher in-hospital mortality. Conversely, arrhythmia as the cause of IHCA and arrests occurring in the intensive care unit or operating room were associated with improved survival. Subgroup analyses confirmed consistent off-hours differences, with weekend events showing reduced 30-day and 6-month survival and worse functional status at discharge. Afternoon/night arrests were more frequent, characterized by longer response intervals and lower survival at both time points. Conclusions: Organizational factors during nights and weekends, rather than patient case mix, drive poorer IHCA outcomes, underscoring the need for targeted system-level improvements. Full article
19 pages, 3076 KB  
Article
Dissecting Context-Specific Effects of ERK5 Signaling in Triple-Negative Breast Cancer
by Katherine L. Hebert, Sarah B. Knopf, Thomas Cheng, Megan C. Benz, Bridgette M. Collins-Burow, Jorge A. Belgodere, Frank H. Lau, Elizabeth C. Martin, Matthew E. Burow and Van H. Barnes
Cancers 2026, 18(3), 376; https://doi.org/10.3390/cancers18030376 - 26 Jan 2026
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of cancer with poor clinical outcomes. There is a critical need to identify novel, druggable targets for TNBC to improve therapy response and patient outcomes. Due to their roles in critical processes driving cancer [...] Read more.
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of cancer with poor clinical outcomes. There is a critical need to identify novel, druggable targets for TNBC to improve therapy response and patient outcomes. Due to their roles in critical processes driving cancer progression, kinases have been a major focus of drug discovery efforts. The role of extracellular signal-regulated kinase 5 (ERK5) in mediating TNBC extracellular matrix (ECM) has previously been described in 2D culture and in vivo. Here, we characterized the impact of ERK5 on breast cancer biology in 2D culture, 3D spheroids, and our 3D breast adipose-macrophysiological system (BA-MaPS). Methods: We assessed migration changes in MDA-MB-231 parental and ERK5-knockout (ERK5-ko) cells cultured in the three in vitro models using transwell, scratch, and spheroid pseudo-migration assays. Differential gene expression among these cell lines in the three platforms was assessed by RNA sequencing and pathway analysis. Stromal remodeling of adipocytes and matrix was evaluated by H&E and Masson’s Trichrome. Results: Across the in vitro models, ERK5 deletion impaired TNBC cell migration. ERK5-mediated transcriptomic changes included genes associated with epithelial-to-mesenchymal transition (EMT) and migration, with further analysis showing significant alterations in core and associated matrisome. Histological staining corroborated the downregulation of collagen with ERK5 depletion in the BA-MaPS. The NFκB pathway was significantly upregulated only in the ERK5-ko 2D-cultured cells, not in 3D spheroids nor the BA-MaPS model. Conclusions: These results indicate a link between ERK5 and TNBC progression through regulation of TME remodeling, EMT, and cell motility. Differences in 2D culture, 3D spheroid, and BA-MaPS underscore the importance of using physiologically relevant models in breast cancer research. Full article
(This article belongs to the Special Issue Multicellular 3D Models of Cancer)
Show Figures

Figure 1

17 pages, 2891 KB  
Review
Sickle Cell Disease and Male Infertility: Pathophysiological Mechanisms, Clinical Manifestations, and Fertility Preservation Strategies—A Narrative Review
by Christos Roidos, Aris Kaltsas, Evangelos N. Symeonidis, Vasileios Tzikoulis, Nikolaos Pantazis, Chara Tsiampali, Natalia Palapela, Athanasios Zachariou, Nikolaos Sofikitis and Fotios Dimitriadis
Life 2026, 16(2), 192; https://doi.org/10.3390/life16020192 - 23 Jan 2026
Viewed by 62
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy in which hemoglobin S polymerization drives hemolysis and vaso-occlusion with progressive organ morbidity. Male reproductive impairment is increasingly recognized but remains underreported. This narrative review summarizes mechanistic pathways, clinical manifestations, and fertility preservation options relevant [...] Read more.
Sickle cell disease (SCD) is an inherited hemoglobinopathy in which hemoglobin S polymerization drives hemolysis and vaso-occlusion with progressive organ morbidity. Male reproductive impairment is increasingly recognized but remains underreported. This narrative review summarizes mechanistic pathways, clinical manifestations, and fertility preservation options relevant to men with SCD. PubMed, the Cochrane Library, and Medscape were searched through 31 December 2025 for human studies addressing endocrine changes, semen quality, priapism and erectile dysfunction, oxidative stress, and treatment-related gonadotoxicity. Evidence supports converging mechanisms: recurrent vaso-occlusion and chronic hypoxia may injure the seminiferous epithelium and impair Leydig cell steroidogenesis; oxidative stress and inflammation contribute to sperm DNA and membrane damage; and disease-modifying or curative therapies such as hydroxyurea and hematopoietic stem cell transplantation can further compromise spermatogenesis. Clinically, men with SCD may present with oligozoospermia, azoospermia, hypogonadism, and sexual dysfunction, particularly after recurrent ischemic priapism. Fertility preservation should be discussed early, ideally before prolonged hydroxyurea exposure or transplantation, and may include semen cryopreservation and testicular sperm extraction (TESE) with assisted reproduction when needed. Prospective longitudinal studies are required to define reproductive trajectories and optimize counseling and management. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

21 pages, 5386 KB  
Article
Identification of Ferroptosis-Related Hub Genes Linked to Suppressed Sulfur Metabolism and Immune Remodeling in Schistosoma japonicum-Induced Liver Fibrosis
by Yin Xu, Hui Xu, Dequan Ying, Jun Wu, Yusong Wen, Tingting Qiu, Sheng Ding, Yifeng Li and Shuying Xie
Pathogens 2026, 15(2), 126; https://doi.org/10.3390/pathogens15020126 - 23 Jan 2026
Viewed by 115
Abstract
Liver fibrosis induced by Schistosoma japonicum Katsurada, 1904 (S. japonicum) infection lacks effective diagnostic markers and specific anti-fibrotic therapies. Although dysregulated iron homeostasis and ferroptosis pathways may contribute to its pathogenesis, the core regulatory mechanisms remain elusive. To unravel the ferroptosis-related [...] Read more.
Liver fibrosis induced by Schistosoma japonicum Katsurada, 1904 (S. japonicum) infection lacks effective diagnostic markers and specific anti-fibrotic therapies. Although dysregulated iron homeostasis and ferroptosis pathways may contribute to its pathogenesis, the core regulatory mechanisms remain elusive. To unravel the ferroptosis-related molecular features, this study integrated transcriptomic datasets (GSE25713 and GSE59276) from S. japonicum-infected mouse livers. Following batch effect correction and normalization, ferroptosis-related differentially expressed genes (FRDEGs) were identified. Subsequently, core hub genes were screened through the construction of a protein–protein interaction (PPI) network, functional enrichment analysis, immune infiltration evaluation, and receiver operating characteristic (ROC) analysis. The expression patterns of these hub genes were further validated in an S. japonicum-infected mouse model using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The study identified 7 hub genes (Lcn2, Timp1, Cth, Cp, Hmox1, Cbs, and Gclc) as key regulatory molecules. Functional enrichment analysis revealed that these hub genes are closely associated with sulfur amino acid metabolism and oxidative stress responses. Specifically, key enzymes involved in cysteine and glutathione (GSH) synthesis (Cth, Cbs, Gclc) were consistently downregulated, suggesting a severe impairment of the host antioxidant defense capacity. Conversely, pro-fibrotic and pro-inflammatory markers (Timp1, Lcn2, Hmox1) were upregulated. This molecular pattern was significantly associated with a remodeled immune microenvironment, characterized by increased infiltration of neutrophils and eosinophils. In vivo validation confirmed the expression trends of 6 hub genes, corroborating the bioinformatics predictions, while the discrepancy in Cp expression highlighted the complexity of post-transcriptional regulation in vivo. The identified hub genes demonstrated excellent diagnostic potential, with Timp1 achieving an area under the curve (AUC) of 1.000. This study elucidates the molecular link between S. japonicum infection and the ferroptosis pathway, suggesting that these hub genes may drive liver fibrosis progression by regulating sulfur metabolism and the immune microenvironment. These findings offer potential diagnostic biomarkers and novel therapeutic targets for schistosomal liver fibrosis. Full article
Show Figures

Figure 1

28 pages, 1706 KB  
Review
From Evasion to Collapse: The Kinetic Cascade of TDP-43 and the Failure of Proteostasis
by Angelo Jamerlan and John Hulme
Int. J. Mol. Sci. 2026, 27(3), 1136; https://doi.org/10.3390/ijms27031136 - 23 Jan 2026
Viewed by 75
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases that, despite the availability of symptomatic and modestly beneficial treatments, still lack therapies capable of halting disease progression. A histopathological hallmark of both diseases is the cytoplasmic deposition of TDP-43 in [...] Read more.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases that, despite the availability of symptomatic and modestly beneficial treatments, still lack therapies capable of halting disease progression. A histopathological hallmark of both diseases is the cytoplasmic deposition of TDP-43 in neurons, which is attributed to both intrinsic (e.g., mutations, aberrant cleavage) and extrinsic factors (e.g., prolonged oxidative stress, impaired clearance pathways). Mutations and certain PTMs (e.g., cysteine oxidation) destabilize RNA binding, promoting monomer misfolding and increasing its half-life. Disruptions to core ubiquitin-proteasome system (UPS) subunits impede efficient processing, contributing to the clearance failure of misfolded TDP-43 monomers. The accumulation of monomers drives phase separation within stress granules, creating nucleation hotspots that eventually bypass the thermodynamic barrier, resulting in exponential growth. This rapid growth then culminates in the failure of the autophagy-lysosome pathway (ALP) to contain the aggregation, resulting in a self-sustaining feed-forward loop. Here, we organize these factors into a conceptual kinetic cascade that links TDP-43 misfolding, phase separation, and clearance failure. Therapeutic strategies must therefore move beyond simple clearance and focus on targeting these kinetic inflection points (e.g., oligomer seeding, PTM modulation). Full article
Show Figures

Figure 1

18 pages, 2652 KB  
Article
Baicalin Alleviates Chronic Restraint Stress-Induced Depression-like Behavior by Suppressing ROS/H2O2 Generation via a BDNF-Associated Mechanism in Mice
by Yu-Ning Teng, Tien-Wei Hsu, Wei-Hao Peng, Cheng-Chun Wu, Tian-Huei Chu, Yung-Kuo Lee, Ming Tatt Lee and Yu-Cheng Ho
Antioxidants 2026, 15(1), 139; https://doi.org/10.3390/antiox15010139 - 21 Jan 2026
Viewed by 99
Abstract
Major depressive disorder (MDD) is a leading cause of global morbidity and mortality. Although pharmacological treatments are widely used, their effects are often limited, and nearly half of patients show resistance to current antidepressants, including those unresponsive to all available therapies. These challenges [...] Read more.
Major depressive disorder (MDD) is a leading cause of global morbidity and mortality. Although pharmacological treatments are widely used, their effects are often limited, and nearly half of patients show resistance to current antidepressants, including those unresponsive to all available therapies. These challenges highlight the need to better understand the neurobiological mechanisms driving MDD and to develop novel therapeutic strategies, especially those involving natural compounds with multitarget actions. Baicalin, a bioactive flavonoid from Scutellaria baicalensis, exhibits antioxidant, anti-inflammatory, and neuroprotective properties and has recently gained attention for its potential to improve cognitive deficits and mood disorders. In this study, we investigated baicalin’s antidepressant potential and its underlying mechanisms across multiple experimental levels. We found that oral administration of baicalin produced antidepressant-like effects in both naïve mice and those subjected to chronic restraint stress (CRS). CRS impaired hippocampal long-term potentiation (LTP), whereas baicalin restored these synaptic deficits. Importantly, intra-dorsal hippocampal microinjection of the TrkB receptor antagonist ANA-12 abolished baicalin’s antidepressant effects, indicating the involvement of BDNF–TrkB signaling. Baicalin also reduced reactive oxygen species (ROS)/H2O2 production in a BDNF-associated manner, demonstrating clear antioxidant activity. Molecular docking further suggested that baicalin binds more effectively to the TrkB receptor than ANA-12, supporting its capacity to activate TrkB-mediated signaling. By integrating in vivo, ex vivo, in vitro, and in silico approaches, our study shows that baicalin exerts robust antioxidant in vitro and antidepressant effects in vivo. These benefits are primarily mediated through activation of BDNF–TrkB signaling, leading to reduced ROS/H2O2 accumulation and alleviation of CRS-induced depression-like behaviors. Full article
(This article belongs to the Special Issue Oxidative Stress in Brain Function—2nd Edition)
Show Figures

Graphical abstract

26 pages, 5310 KB  
Review
Neutrophil Extracellular Traps: Potential Therapeutic Targets of Traditional Chinese Medicine and Natural Products for Cardiovascular Diseases
by Yichen Liu, Yunhe Guo, Xinru Wu, Peiyu Yan and Yan Wei
Pharmaceuticals 2026, 19(1), 183; https://doi.org/10.3390/ph19010183 - 20 Jan 2026
Viewed by 219
Abstract
Cardiovascular disease (CVD) remains a leading cause of global morbidity and mortality, and its initiation and progression are closely associated with multiple molecular mechanisms. Neutrophil extracellular traps (NETs) are mesh-like structures composed of DNA, histones, and antimicrobial proteins that are released by neutrophils [...] Read more.
Cardiovascular disease (CVD) remains a leading cause of global morbidity and mortality, and its initiation and progression are closely associated with multiple molecular mechanisms. Neutrophil extracellular traps (NETs) are mesh-like structures composed of DNA, histones, and antimicrobial proteins that are released by neutrophils during inflammation or infection. They play a crucial role in innate immune defense. However, when the dynamic balance of NETs is disrupted by excessive formation, persistent accumulation, or impaired clearance, NETs are no longer merely bystanders. Instead, they actively drive pathological processes in multiple CVDs and serve as a critical link between inflammation and cardiovascular injury. Given the central role of NETs in CVD pathogenesis, including atherosclerosis, myocardial ischemia–reperfusion injury, pulmonary arterial hypertension, atrial fibrillation, and heart failure, therapeutic strategies targeting NETs, such as inhibiting aberrant formation, enhancing clearance, or neutralizing toxic components, have emerged as promising approaches. In recent years, traditional Chinese medicine (TCM) and natural products have shown potential therapeutic value by modulating NET formation and promoting NET degradation, owing to their multitarget, multipathway regulatory effects. This article reviews the mechanisms by which NETs operate in CVDs and explores potential pathways through which TCM and natural active ingredients prevent and treat CVDs by regulating NETs. This review provides theoretical support for further research and clinical application. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

23 pages, 639 KB  
Review
Synaptic Plasticity in Neurodegenerative Diseases: Impact of Exercise as Promising Therapeutic Tool
by Gabriele Farina, Gianmarco Fenili, Maria Paola Paronetto and Clara Crescioli
Cells 2026, 15(2), 197; https://doi.org/10.3390/cells15020197 - 20 Jan 2026
Viewed by 148
Abstract
Neurodegenerative diseases are distinguished by synaptic dysfunction and chronic neuroinflammation, which accelerate neuronal loss and impair network resilience. Synaptic plasticity, that is, the ability to adapt to changes, is progressively lost. This ability is part of hormesis, an adaptive biphasic response, nowadays acknowledged [...] Read more.
Neurodegenerative diseases are distinguished by synaptic dysfunction and chronic neuroinflammation, which accelerate neuronal loss and impair network resilience. Synaptic plasticity, that is, the ability to adapt to changes, is progressively lost. This ability is part of hormesis, an adaptive biphasic response, nowadays acknowledged as a promising tool in chronic degenerative diseases, since it offers a framework for personalized interventions. Growing evidence supports exercise as a powerful approach for managing neurodegenerative disorders, due to its capacity to enhance neuroplasticity through the direct targeting of the biomolecular processes involved. Indeed, regular exercise can drive many molecular mediators and signals toward neuroplasticity improvement, potentially slowing neurodegeneration. This narrative review focuses on exercise as a promising therapeutic approach in neurodegenerative diseases, based on its ability to shape synaptic plasticity at the molecular level. Some biomediators involved in synaptic plasticity function/dysfunction and neuroinflammation/neurodegeneration are addressed as therapeutic targets of exercise, and different exercise regimens are discussed as specific therapeutic interventions to contain the burden of some neurodegenerative conditions. Some clinical trials including exercise in the treatment of neurodegenerative diseases are summarized. Since no definitive disease-modifying cure exists for these illnesses, exercise’s ability to shape synaptic plasticity emerges as a highly attractive therapeutic approach. Full article
(This article belongs to the Special Issue Neuroinflammation in Brain Health and Diseases)
Show Figures

Figure 1

38 pages, 3246 KB  
Review
Mitochondrial Ca2+ Signaling at the Tripartite Synapse: A Unifying Framework for Glutamate Homeostasis, Metabolic Coupling, and Network Vulnerability
by Mariagrazia Mancuso, Federico Mezzalira, Beatrice Vignoli and Elisa Greotti
Biomolecules 2026, 16(1), 171; https://doi.org/10.3390/biom16010171 - 20 Jan 2026
Viewed by 122
Abstract
Mitochondrial Ca2+ signaling is increasingly recognized as a key integrator of synaptic activity, metabolism, and redox balance within the tripartite synapse. At excitatory synapses, Ca2+ influx through ionotropic glutamate receptors and voltage-gated channels is sensed and transduced by strategically positioned mitochondria, [...] Read more.
Mitochondrial Ca2+ signaling is increasingly recognized as a key integrator of synaptic activity, metabolism, and redox balance within the tripartite synapse. At excitatory synapses, Ca2+ influx through ionotropic glutamate receptors and voltage-gated channels is sensed and transduced by strategically positioned mitochondria, whose Ca2+ uptake and release tune tricarboxylic acid cycle activity, adenosine triphosphate synthesis, and reactive oxygen species (ROS) generation. Through these Ca2+-dependent processes, mitochondria are proposed to help set the threshold at which glutamatergic activity supports synaptic plasticity and homeostasis or, instead, drives hyperexcitability and excitotoxic stress. Here, we synthesize how mitochondrial Ca2+ dynamics in presynaptic terminals, postsynaptic spines, and perisynaptic astrocytic processes regulate glutamate uptake, recycling, and release, and how subtle impairments in these pathways may prime synapses for failure well before overt energetic collapse. We further examine the reciprocal interplay between Ca2+-dependent metabolic adaptations and glutamate homeostasis, the crosstalk between mitochondrial Ca2+ and ROS signals, and the distinct vulnerabilities of neuronal and astrocytic mitochondria. Finally, we discuss how disruption of this Ca2+-centered mitochondria–glutamatergic axis contributes to synaptic dysfunction and circuit vulnerability in neurodegenerative diseases, with a particular focus on Alzheimer’s disease. Full article
(This article belongs to the Special Issue Neuron–Astrocyte Interactions in Neurological Function and Disease)
Show Figures

Figure 1

23 pages, 2194 KB  
Article
Unraveling the Impact of KRAS Accessory Proteins on Oncogenic Signaling Pathways
by Vanshika Garg, Raphael N. H. M. Hofmann, Moazzam Saleem, Amin Mirzaiebadizi, Ghazaleh Sadat Hashemi, Tooba Hameed, Bahareh Jooyeh, Silke Pudewell, Mehrnaz Mehrabipour, Niloufar Mosaddeghzadeh, Roland P. Piekorz and Mohammad Reza Ahmadian
Cells 2026, 15(2), 190; https://doi.org/10.3390/cells15020190 - 20 Jan 2026
Viewed by 329
Abstract
The oncogene KRAS drives tumor growth by activating pathways such as MAPK and PI3K-AKT in a constitutive manner. Although direct KRAS inhibitors exist, they are often limited in clinical use due to therapeutic resistance and toxicity. Therefore, alternative combinatorial therapeutic strategies are urgently [...] Read more.
The oncogene KRAS drives tumor growth by activating pathways such as MAPK and PI3K-AKT in a constitutive manner. Although direct KRAS inhibitors exist, they are often limited in clinical use due to therapeutic resistance and toxicity. Therefore, alternative combinatorial therapeutic strategies are urgently needed. This study examined the knockout of five KRAS-related proteins—galectin-3 (GAL3), phosphodiesterase delta (PDEδ), nucleophosmin (NPM1), IQ motif-containing GTPase-activating protein 1 (IQGAP1), and SHOC2—using CRISPR-Cas9 in adenocarcinoma cell lines harboring the KRAS(G12V) oncogenic mutation, as well as in the noncancerous HEK-293 cell line. These proteins act as critical modulators that regulate KRAS activity, cellular localization, and that of its downstream signaling components. We analyzed the downstream activation of ERK and AKT kinases and evaluated subsequent cancer cell proliferation. Knockout of GAL3 and PDEδ was highly effective, significantly reducing MAPK and PI3K-AKT pathway activity and substantially impairing cell proliferation. SHOC2 knockout selectively and potently disrupted MAPK activation, while NPM1 knockout resulted in the complex, reciprocal modulation of the two major pathways. Notably, knocking out IQGAP1 enhanced PI3K–AKT and mTORC2–AKT signaling without affecting the MAPK pathway. These distinct modulatory roles highlight the non-redundant functions of the accessory proteins. In conclusion, our findings establish GAL3 and PDEδ, two KRAS-associated proteins, as promising combinatorial drug targets. Targeting these modulators provides an effective alternative strategy to overcome resistance mechanisms and enhance the clinical utility of existing KRAS inhibitors. Full article
(This article belongs to the Special Issue Ras Family of Genes and Proteins: Structure, Function and Regulation)
Show Figures

Figure 1

20 pages, 1726 KB  
Review
CILP2: From ECM Component to a Pleiotropic Modulator in Metabolic Dysfunction, Cancer, and Beyond
by Zheqiong Tan, Suotian Liu and Zhongxin Lu
Biomolecules 2026, 16(1), 167; https://doi.org/10.3390/biom16010167 - 19 Jan 2026
Viewed by 126
Abstract
Initially characterized as a component of the extracellular matrix (ECM) in cartilage, cartilage intermediate layer protein 2 (CILP2) is now recognized as a pleiotropic secretory protein with far-reaching roles in physiology and disease. This review synthesizes evidence establishing CILP2 as a key modulator [...] Read more.
Initially characterized as a component of the extracellular matrix (ECM) in cartilage, cartilage intermediate layer protein 2 (CILP2) is now recognized as a pleiotropic secretory protein with far-reaching roles in physiology and disease. This review synthesizes evidence establishing CILP2 as a key modulator at the nexus of metabolic dysfunction, cancer, and other pathologies. Genomic studies have firmly established the NCAN-CILP2 locus as a hotspot for genetic variants influencing dyslipidemia and cardiovascular risk. Functionally, CILP2 is upregulated by metabolic stress, including high glucose and oxidatively modified LDL (oxLDL), and actively contributes to pathologies such as dyslipidemia, diabetes, and sarcopenia by impairing glucose metabolism and mitochondrial function. Its role extends to fibrosis and neurodevelopment, promoting hypertrophic scar formation and neurogenesis through interactions with ATP citrate lyase (ACLY) and Wnt3a, respectively. More recently, CILP2 has emerged as an oncoprotein, overexpressed in multiple cancers, including pancreatic ductal adenocarcinoma and colorectal cancer. It drives tumor proliferation and metastasis and correlates with tumor microenvironment remodeling through mechanisms involving Akt/EMT signaling and immune infiltration. The dysregulation of CILP2 in patient serum and its correlation with disease severity and poor prognosis highlight it as a promising biomarker and a compelling therapeutic target across a spectrum of human diseases. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

18 pages, 9922 KB  
Article
Der p1 Dendritic Cells Promote Regulatory B Cell Induced Immunotolerance Through IL-10/STAT3 in Allergic Rhinitis
by Kai Fan, Ling Jin, Chuanliang Zhao, Shican Zhou, Shiwang Tan, Ju Lai, Chunyan Yao, Bojin Long, Yawen Gao and Shaoqing Yu
Biomedicines 2026, 14(1), 206; https://doi.org/10.3390/biomedicines14010206 - 18 Jan 2026
Viewed by 231
Abstract
Background/Objectives: Allergic rhinitis (AR) is a complex immune-mediated disorder characterized by defective regulatory mechanisms. Emerging evidence suggests that impaired immune tolerance mediated by regulatory B cell (Breg) plays a pivotal role in AR pathogenesis. This study investigates the therapeutic potential of Der [...] Read more.
Background/Objectives: Allergic rhinitis (AR) is a complex immune-mediated disorder characterized by defective regulatory mechanisms. Emerging evidence suggests that impaired immune tolerance mediated by regulatory B cell (Breg) plays a pivotal role in AR pathogenesis. This study investigates the therapeutic potential of Der p1 allergen-modified dendritic cells (DC) in enhancing Breg-mediated immunotherapy and explores novel mechanisms underlying AR immunomodulation. Methods: Breg and the inflammatory cytokines were detected before and after allergen immunotherapy (AIT) in AR patients. Dust mite gene-derived dendritic cells were used to induce Breg. AR mice were treated with Der p1-DCs, and changes in Breg and related inflammatory indicators, as well as the impact of the IL-10/STAT pathway on DC vaccine treatment, were observed. Results: Following 6-month AIT, AR patients exhibited significant alleviation of nasal symptoms alongside restored peripheral Breg and Treg. In vitro co-culture of Der p1-DC-induced Bregs with CD4+CD25T cells revealed that IL-10 blockade markedly increased Th cell. In AR murine models, intraperitoneal Der p1-DC administration suppressed allergic symptoms, upregulated nasal mucosal IL-10 expression, and attenuated STAT3 phosphorylation via IL-10 overexpression. Conclusions: AIT establishes immune tolerance through Breg-mediated regulatory mechanisms, while Der p1-DCs potently induce Breg differentiation and drive tolerance induction via the IL-10/STAT3 signaling axis. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

20 pages, 9139 KB  
Article
Western Diet Dampens T Regulatory Cell Function to Fuel Hepatic Inflammation in Metabolic Dysfunction-Associated Steatotic Liver Disease
by Sudrishti Chaudhary, Ravi Rai, Pabitra B. Pal, Dana Tedesco, Daniel Rossmiller, Biki Gupta, Aatur D. Singhi, Satdarshan P. Monga, Arash Grakoui, Smita S. Iyer and Reben Raeman
Cells 2026, 15(2), 165; https://doi.org/10.3390/cells15020165 - 16 Jan 2026
Viewed by 196
Abstract
The immunosuppressive T regulatory cells (Tregs) regulate immune responses and maintain immune homeostasis, yet their functions in metabolic dysfunction-associated steatotic liver disease (MASLD) remain controversial. Here we report increased accumulation of Tregs and effector T cells within the liver parenchyma of mice fed [...] Read more.
The immunosuppressive T regulatory cells (Tregs) regulate immune responses and maintain immune homeostasis, yet their functions in metabolic dysfunction-associated steatotic liver disease (MASLD) remain controversial. Here we report increased accumulation of Tregs and effector T cells within the liver parenchyma of mice fed a Western diet (WD). This pattern was also observed in MASH patients, where an increase in intrahepatic Tregs was noted. In the absence of adaptive immune cells in Rag1 KO mice, WD promoted accumulation of intrahepatic neutrophils and macrophages and exacerbated hepatic inflammation and fibrosis. Similarly, targeted Treg depletion exacerbated WD-induced hepatic inflammation and fibrosis. In Treg-depleted mice, hepatic injury was associated with increased accumulation of neutrophils, macrophages, and activated T cells in the liver. Conversely, induction of Treg numbers using recombinant IL2/αIL2 mAb cocktail reduced hepatic steatosis, inflammation, and fibrosis in WD-fed mice. Analysis of intrahepatic Tregs from WD-fed mice revealed a phenotypic signature of impaired Treg function in MASLD. Ex vivo functional studies showed that glucose and palmitate, but not fructose, impaired the immunosuppressive ability of Treg cells. The findings indicate that the liver microenvironment in MASLD impairs the ability of Tregs to suppress effector immune cell activation, thus perpetuating chronic inflammation and driving MASLD progression. Full article
Show Figures

Graphical abstract

15 pages, 2979 KB  
Article
Site-Specific Aspartic Acid d-Isomerization in Tau R2 and R3 Peptide Seeds Attenuates Seed-Induced Fibril Formation of Full-Length Tau
by Genta Ito, Takuya Murata, Noriko Isoo, Toshihiro Hayashi and Naoko Utsunomiya-Tate
Biomolecules 2026, 16(1), 143; https://doi.org/10.3390/biom16010143 - 13 Jan 2026
Viewed by 180
Abstract
The aggregation of tau protein is a central pathological event in Alzheimer’s disease, and this pathology is hypothesized to spread via a prion-like mechanism driven by tau “seeds”. While aggregated tau from Alzheimer’s disease brains is known to contain age-related d-isomerized aspartic [...] Read more.
The aggregation of tau protein is a central pathological event in Alzheimer’s disease, and this pathology is hypothesized to spread via a prion-like mechanism driven by tau “seeds”. While aggregated tau from Alzheimer’s disease brains is known to contain age-related d-isomerized aspartic acid (d-Asp) residues, it remains unknown how this modification affects the seeding activity that drives disease propagation. Here, we investigated the impact of site-specific d-isomerization within R2 and R3 tau repeat-domain peptides, which form the core of tau fibrils. We demonstrate that the stereochemical integrity of these peptides is critical for their seeding function. d-isomerization at Asp314 within the R3 peptide seed severely impaired its ability to template the fibrillization of full-length tau in vitro. This finding was validated in a cellular model, where R3 seeds containing d-Asp314 were significantly less potent at inducing the formation of phosphorylated tau aggregates compared to wild-type seeds. Our results establish that Asp d-isomerization within tau seeds acts as a potent attenuator of their pathological seeding activity, suggesting this spontaneous modification may intrinsically modulate the progression of Alzheimer’s disease. Full article
(This article belongs to the Special Issue Protein Self-Assembly in Diseases and Function)
Show Figures

Figure 1

Back to TopTop