Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = immunoproteasome (iP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 978 KiB  
Article
The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice
by Niccolette Schaunaman, Taylor Nichols, Diana Cervantes, Paige Hartsoe, Deborah A. Ferrington and Hong Wei Chu
Viruses 2024, 16(9), 1384; https://doi.org/10.3390/v16091384 - 29 Aug 2024
Cited by 3 | Viewed by 1354
Abstract
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The [...] Read more.
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency. Full article
(This article belongs to the Special Issue Rhinoviruses and Asthma)
Show Figures

Figure 1

15 pages, 3383 KiB  
Article
Inhibition of Immunoproteasome Attenuates NLRP3 Inflammasome Response by Regulating E3 Ubiquitin Ligase TRIM31
by Yubin Lee, Boran Yoon, Sumin Son, Eunbin Cho, Kyung Bo Kim, Eun Young Choi and Dong-Eun Kim
Cells 2024, 13(8), 675; https://doi.org/10.3390/cells13080675 - 13 Apr 2024
Cited by 2 | Viewed by 2364
Abstract
Excessive secretion of pro-inflammatory cytokines leads to the disruption of intestinal barrier in inflammatory bowel disease (IBD). The inflammatory cytokine tumor necrosis factor alpha (TNFα) induces the assembly of the NLRP3 inflammasome, resulting in the augmented secretion of inflammatory cytokines implicated in the [...] Read more.
Excessive secretion of pro-inflammatory cytokines leads to the disruption of intestinal barrier in inflammatory bowel disease (IBD). The inflammatory cytokine tumor necrosis factor alpha (TNFα) induces the assembly of the NLRP3 inflammasome, resulting in the augmented secretion of inflammatory cytokines implicated in the pathogenesis of inflammatory bowel disease (IBD). TNFα has also been known to induce the formation of immunoproteasome (IP), which incorporates immunosubunits LMP2, LMP7, and MECL-1. Inhibition of IP activity using the IP subunit LMP2-specific inhibitor YU102, a peptide epoxyketone, decreased the protein levels of NLRP3 and increased the K48-linked polyubiquitination levels of NLRP3 in TNFα-stimulated intestinal epithelial cells. We observed that inhibition of IP activity caused an increase in the protein level of the ubiquitin E3 ligase, tripartite motif-containing protein 31 (TRIM31). TRIM31 facilitated K48-linked polyubiquitination and proteasomal degradation of NLRP3 with an enhanced interaction between NLRP3 and TRIM31 in intestinal epithelial cells. In addition, IP inhibition using YU102 ameliorated the symptoms of colitis in the model mice inflicted with dextran sodium sulfate (DSS). Administration of YU102 in the DSS-treated colitis model mice caused suppression of the NLRP3 protein levels and accompanied inflammatory cytokine release in the intestinal epithelium. Taken together, we demonstrated that inhibiting IP under inflammatory conditions induces E3 ligase TRIM31-mediated NLRP3 degradation, leading to attenuation of the NLRP3 inflammatory response that triggers disruption of intestinal barrier. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

16 pages, 3224 KiB  
Article
Ursolic Acid Ameliorates Myocardial Ischaemia/Reperfusion Injury by Improving Mitochondrial Function via Immunoproteasome-PP2A-AMPK Signalling
by Luo-Luo Xu, Hui-Xiang Su, Pang-Bo Li and Hui-Hua Li
Nutrients 2023, 15(4), 1049; https://doi.org/10.3390/nu15041049 - 20 Feb 2023
Cited by 23 | Viewed by 3757
Abstract
Cardiac ischaemia/reperfusion (I/R) injury causes cardiomyocyte apoptosis and mitochondrial dysfunction. Ursolic acid (UA), as a pentacyclic triterpenoid carboxylic acid, exerts several bioactivities in animal models of different diseases, but the preventive role of UA in I/R-induced myocardial dysfunction remains largely unknown. Male wild-type [...] Read more.
Cardiac ischaemia/reperfusion (I/R) injury causes cardiomyocyte apoptosis and mitochondrial dysfunction. Ursolic acid (UA), as a pentacyclic triterpenoid carboxylic acid, exerts several bioactivities in animal models of different diseases, but the preventive role of UA in I/R-induced myocardial dysfunction remains largely unknown. Male wild-type mice were pre-administered with UA at a dosage of 80 mg/kg i.p. and then subjected to cardiac I/R injury for 24 h. Cardiac function and pathological changes were examined by echocardiography and histological staining. The protein and mRNA levels of the genes were determined using qPCR and immunoblotting analysis. Our results revealed that UA administration in mice significantly attenuated the I/R-induced decline in cardiac function, infarct size, myocyte apoptosis, and oxidative stress. Mechanistically, UA increased three immunoproteasome catalytic subunit expressions and activities, which promoted ubiquitinated PP2A degradation and activated AMPK-PGC1α signalling, leading to improved mitochondrial biosynthesis and dynamic balance. In vitro experiments confirmed that UA treatment prevented hypoxia/reperfusion (H/R)-induced cardiomyocyte apoptosis and mitochondrial dysfunction through activation of AMPK signalling. In summary, our findings identify UA as a new activator of the immunoproteasome that exerts a protective role in I/R-induced myocardial dysfunction and suggest that UA supplementation could be beneficial for the prevention of cardiac ischaemic disease. Full article
Show Figures

Graphical abstract

16 pages, 3227 KiB  
Article
Immunoproteasome Inhibition Ameliorates Aged Dystrophic Mouse Muscle Environment
by Luana Tripodi, Davide Molinaro, Francesco Fortunato, Carolina Mella, Barbara Cassani, Yvan Torrente and Andrea Farini
Int. J. Mol. Sci. 2022, 23(23), 14657; https://doi.org/10.3390/ijms232314657 - 24 Nov 2022
Cited by 6 | Viewed by 3266
Abstract
Muscle wasting is a major pathological feature observed in Duchenne muscular dystrophy (DMD) and is the result of the concerted effects of inflammation, oxidative stress and cell senescence. The inducible form of proteasome, or immunoproteasome (IP), is involved in all the above mentioned [...] Read more.
Muscle wasting is a major pathological feature observed in Duchenne muscular dystrophy (DMD) and is the result of the concerted effects of inflammation, oxidative stress and cell senescence. The inducible form of proteasome, or immunoproteasome (IP), is involved in all the above mentioned processes, regulating antigen presentation, cytokine production and immune cell response. IP inhibition has been previously shown to dampen the altered molecular, histological and functional features of 3-month-old mdx mice, the animal model for DMD. In this study, we described the role of ONX-0914, a selective inhibitor of the PSMB8 subunit of immunoproteasome, in ameliorating the pathological traits that could promote muscle wasting progression in older, 9-month-old mdx mice. ONX-0914 reduces the number of macrophages and effector memory T cells in muscle and spleen, while increasing the number of regulatory T cells. It modulates inflammatory markers both in skeletal and cardiac muscle, possibly counteracting heart remodeling and hypertrophy. Moreover, it buffers oxidative stress by improving mitochondrial efficiency. These changes ultimately lead to a marked decrease of fibrosis and, potentially, to more controlled myofiber degeneration/regeneration cycles. Therefore, ONX-0914 is a promising molecule that may slow down muscle mass loss, with relatively low side effects, in dystrophic patients with moderate to advanced disease. Full article
(This article belongs to the Special Issue Emerging Mechanisms for Skeletal Muscle Mass Regulation)
Show Figures

Figure 1

18 pages, 1457 KiB  
Review
On the Role of the Immunoproteasome in Protein Homeostasis
by Michael Basler and Marcus Groettrup
Cells 2021, 10(11), 3216; https://doi.org/10.3390/cells10113216 - 18 Nov 2021
Cited by 41 | Viewed by 5268
Abstract
Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic [...] Read more.
Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic cells. MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), which is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Furthermore, the immunoproteasome is involved in T cell expansion and inflammatory diseases. In recent years, targeting the immunoproteasome in cancer, autoimmune diseases, and transplantation proved to be therapeutically effective in preclinical animal models. However, the prime function of standard proteasomes and immunoproteasomes is the control of protein homeostasis in cells. To maintain protein homeostasis in cells, proteasomes remove proteins which are not properly folded, which are damaged by stress conditions such as reactive oxygen species formation, or which have to be degraded on the basis of regular protein turnover. In this review we summarize the latest insights on how the immunoproteasome influences protein homeostasis. Full article
(This article belongs to the Special Issue The Immunoproteasome in Health and Disease)
Show Figures

Figure 1

22 pages, 6719 KiB  
Article
A Cell-Based Platform for the Investigation of Immunoproteasome Subunit β5i Expression and Biology of β5i-Containing Proteasomes
by Alexander Burov, Sergei Funikov, Elmira Vagapova, Alexandra Dalina, Alexander Rezvykh, Elena Shyrokova, Timofey Lebedev, Ekaterina Grigorieva, Vladimir Popenko, Olga Leonova, Daria Spasskaya, Pavel Spirin, Vladimir Prassolov, Vadim Karpov and Alexey Morozov
Cells 2021, 10(11), 3049; https://doi.org/10.3390/cells10113049 - 5 Nov 2021
Cited by 5 | Viewed by 4205
Abstract
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using [...] Read more.
The degradation of most intracellular proteins is a dynamic and tightly regulated process performed by proteasomes. To date, different forms of proteasomes have been identified. Currently the role of non-constitutive proteasomes (immunoproteasomes (iPs) and intermediate proteasomes (intPs)) has attracted special attention. Here, using a CRISPR-Cas9 nickase technology, four cell lines: histiocytic lymphoma, colorectal adenocarcinoma, cervix adenocarcinoma, and hepatocarcinoma were modified to express proteasomes with mCherry-tagged β5i subunit, which is a catalytic subunit of iPs and intPs. Importantly, the expression of the chimeric gene in modified cells is under the control of endogenous regulatory mechanisms and is increased following IFN-γ and/or TNF-α stimulation. Fluorescent proteasomes retain catalytic activity and are distributed within the nucleus and cytoplasm. RNAseq reveals marginal differences in gene expression profiles between the modified and wild-type cell lines. Predominant metabolic pathways and patterns of expressed receptors were identified for each cell line. Using established cell lines, we demonstrated that anti-cancer drugs Ruxolitinib, Vincristine and Gefitinib stimulated the expression of β5i-containing proteasomes, which might affect disease prognosis. Taken together, obtained cell lines can be used as a platform for real-time studies of immunoproteasome gene expression, localization of iPs and intPs, interaction of non-constitutive proteasomes with other proteins, proteasome trafficking and many other aspects of proteasome biology in living cells. Moreover, the established platform might be especially useful for fast and large-scale experiments intended to evaluate the effects of different conditions including treatment with various drugs and compounds on the proteasome pool. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

21 pages, 1207 KiB  
Review
Immunoproteasome Function in Normal and Malignant Hematopoiesis
by Nuria Tubío-Santamaría, Frédéric Ebstein, Florian H. Heidel and Elke Krüger
Cells 2021, 10(7), 1577; https://doi.org/10.3390/cells10071577 - 22 Jun 2021
Cited by 21 | Viewed by 6424
Abstract
The ubiquitin–proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the [...] Read more.
The ubiquitin–proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers. Full article
(This article belongs to the Special Issue The Immunoproteasome in Health and Disease)
Show Figures

Figure 1

14 pages, 2115 KiB  
Article
Omega-3 PUFAs Suppress IL-1β-Induced Hyperactivity of Immunoproteasomes in Astrocytes
by Emilia Zgorzynska, Barbara Dziedzic, Monika Markiewicz and Anna Walczewska
Int. J. Mol. Sci. 2021, 22(11), 5410; https://doi.org/10.3390/ijms22115410 - 21 May 2021
Cited by 11 | Viewed by 3485
Abstract
The role of immunoproteasome (iP) in astroglia, the cellular component of innate immunity, has not been clarified. The results so far indicate that neuroinflammation, a prominent hallmark of Alzheimer’s disease, strongly activates the iP subunits expression. Since omega-3 PUFAs possess anti-inflammatory and pro-resolving [...] Read more.
The role of immunoproteasome (iP) in astroglia, the cellular component of innate immunity, has not been clarified. The results so far indicate that neuroinflammation, a prominent hallmark of Alzheimer’s disease, strongly activates the iP subunits expression. Since omega-3 PUFAs possess anti-inflammatory and pro-resolving activity in the brain, we investigated the effect of DHA and EPA on the gene expression of constitutive (β1 and β5) and inducible (iβ1/LMP2 and iβ5/LMP7) proteasome subunits and proteasomal activity in IL-1β-stimulated astrocytes. We found that both PUFAs downregulated the expression of IL-1β-induced the iP subunits, but not the constitutive proteasome subunits. The chymotrypsin-like activity was inhibited in a dose-dependent manner by DHA, and much strongly in the lower concentration by EPA. Furthermore, we established that C/EBPα and C/EBPβ transcription factors, being the cis-regulatory element of the transcription complex, frequently activated by inflammatory mediators, participate in a reduction in the iP subunits’ expression. Moreover, the expression of connexin 43 the major gap junction protein in astrocytes, negatively regulated by IL-1β was markedly increased in PUFA-treated cells. These findings indicate that omega-3 PUFAs attenuate inflammation-induced hyperactivity of iPs in astrocytes and have a beneficial effect on preservation of interastrocytic communication by gap junctions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 3103 KiB  
Article
Immunoproteasome Activity and Content Determine Hematopoietic Cell Sensitivity to ONX-0914 and to the Infection of Cells with Lentiviruses
by Elmira Vagapova, Alexander Burov, Daria Spasskaya, Timofey Lebedev, Tatiana Astakhova, Pavel Spirin, Vladimir Prassolov, Vadim Karpov and Alexey Morozov
Cells 2021, 10(5), 1185; https://doi.org/10.3390/cells10051185 - 12 May 2021
Cited by 6 | Viewed by 3524
Abstract
Proteasomes are intracellular structures responsible for protein degradation. The 20S proteasome is a core catalytic element of the proteasome assembly. Variations of catalytic subunits generate different forms of 20S proteasomes including immunoproteasomes (iPs), which are present mostly in the immune cells. Certain cells [...] Read more.
Proteasomes are intracellular structures responsible for protein degradation. The 20S proteasome is a core catalytic element of the proteasome assembly. Variations of catalytic subunits generate different forms of 20S proteasomes including immunoproteasomes (iPs), which are present mostly in the immune cells. Certain cells of the immune system are primary targets of retroviruses. It has been shown that several viral proteins directly affect proteasome functionality, while inhibition of proteasome activity with broad specificity proteasome inhibitors stimulates viral transduction. Here we specifically addressed the role of the immunoproteasomes during early stages of viral transduction and investigated the effects of specific immunoproteasome inhibition and activation prior to infection using a panel of cell lines. Inhibition of iPs in hematopoietic cells with immunoproteasome-specific inhibitor ONX-0914 resulted in increased infection by VSV-G pseudotyped lentiviruses. Moreover, a tendency for increased infection of cloned cells with endogenously decreased proteasome activity was revealed. Conversely, activation of iPs by IFN-γ markedly reduced the viral infectivity, which was rescued upon simultaneous immunoproteasome inhibition. Our results indicate that immunoproteasome activity might be determinative for the cellular antiretroviral resistance at least for the cells with high iP content. Finally, therapeutic application of immunoproteasome inhibitors might promote retroviral infection of cells in vivo. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

19 pages, 5701 KiB  
Article
Immunoproteasome Genes Are Modulated in CD34+ JAK2V617F Mutated Cells from Primary Myelofibrosis Patients
by Michelino Di Rosa, Cesarina Giallongo, Alessandra Romano, Daniele Tibullo, Giovanni Li Volti, Giuseppe Musumeci, Ignazio Barbagallo, Rosa Imbesi, Paola Castrogiovanni and Giuseppe A. Palumbo
Int. J. Mol. Sci. 2020, 21(8), 2926; https://doi.org/10.3390/ijms21082926 - 22 Apr 2020
Cited by 12 | Viewed by 4059
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34 [...] Read more.
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation. Full article
(This article belongs to the Special Issue BCR-ABL1 Negative Myeloproliferative Neoplasms)
Show Figures

Figure 1

Back to TopTop