Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = icmE protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1920 KiB  
Article
The Absence of Bovine Serum Albumin (BSA) in Preimplantation Culture Media Impairs Embryonic Development and Induces Metabolic Alterations in Mouse Offspring
by Jannatul Ferdous Jharna, Md Wasim Bari, Norermi Firzana Alfian and Satoshi Kishigami
Int. J. Mol. Sci. 2025, 26(14), 6989; https://doi.org/10.3390/ijms26146989 - 21 Jul 2025
Viewed by 910
Abstract
Bovine serum albumin (BSA), the most commonly used protein in preimplantation embryo culture media, performs a variety of physiological functions. However, its involvement in long-term effects remains largely unclear. To investigate its physiological importance in culture media, we examined the developmental and metabolic [...] Read more.
Bovine serum albumin (BSA), the most commonly used protein in preimplantation embryo culture media, performs a variety of physiological functions. However, its involvement in long-term effects remains largely unclear. To investigate its physiological importance in culture media, we examined the developmental and metabolic consequences of BSA deprivation during preimplantation stages in mice. Embryos cultured in BSA-free media during specific time windows exhibited impaired blastocyst formation, with continuous deprivation from the two-pronuclei (2PN) stage significantly reducing trophectoderm (TE) and inner cell mass (ICM) cell numbers (p < 0.05), indicating compromised viability. Short-term BSA deprivation similarly disrupted lineage allocation, underscoring the sensitivity of early embryos to nutrient availability during cell fate determination. Although birth rates remained unaffected, suggesting compensatory mechanisms, longitudinal analysis revealed sex-specific metabolic dysfunction. Male offspring developed progressive glucose intolerance by 16 weeks, exhibiting elevated fasting glucose levels (p < 0.05) and impaired glucose clearance, whereas females showed no significant alterations in glucose metabolism. This study demonstrates that protein restriction during the preimplantation period not only disrupts early embryonic development but also programs long-term metabolic dysfunction, underscoring the importance of optimizing culture conditions in assisted reproductive technologies to minimize future health risks. Full article
Show Figures

Graphical abstract

18 pages, 1537 KiB  
Article
Reduced Expression of UPRmt Proteins HSP10, HSP60, HTRA2, OMA1, SPG7, and YME1L Is Associated with Accelerated Heart Failure in Humans
by Petra Bakovic, Vid Mirosevic, Tomo Svagusa, Ana Sepac, Ana Kulic, Davor Milicic, Hrvoje Gasparovic, Igor Rudez, Marjan Urlic, Suncana Sikiric, Sven Seiwerth, Drazen Belina, Matija Bakos, Monika Karija Vlahovic, Rea Taradi, Rado Zic, Ivana Ilic, Borislav Belev, Bosko Skoric, Dora Fabijanovic, Ivo Planinc, Maja Cikes and Filip Sedlicadd Show full author list remove Hide full author list
Biomedicines 2025, 13(5), 1142; https://doi.org/10.3390/biomedicines13051142 - 8 May 2025
Viewed by 816
Abstract
Background/Objectives: The mitochondrial unfolded protein response (UPRmt) is one of the mitochondrial quality control mechanisms that is responsible for reparation and removal of damaged proteins in mitochondria. Methods: Here we investigated the role of the UPRmt in the myocardium of humans with [...] Read more.
Background/Objectives: The mitochondrial unfolded protein response (UPRmt) is one of the mitochondrial quality control mechanisms that is responsible for reparation and removal of damaged proteins in mitochondria. Methods: Here we investigated the role of the UPRmt in the myocardium of humans with and without heart failure and in the cell culture model. Results: The analysis of myocardial samples by ELISA from patients with ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), as well as healthy donors, revealed a significantly reduced expression of the UPRmt proteins HSP10, CLPP, LONP1, OMA1, and SPG7 in patients with DCM and ICM. Furthermore, patients with DCM and ICM exhibited elevated levels of myocardial reactive oxygen species (ROS, tested by 4-hydroxynonenal) compared to controls, and a positive correlation between ROS production and mt-HSP70, OMA1, and SPG7 protein expression. The correlation analysis indicated a negative correlation between cardiomyocyte hypertrophy and the expression of several UPRmt genes. The inhibition of four tested UPRmt effector proteins exacerbated the injury of cultured cells under oxidative stress. The patients with ICM, DCM, or both, who showed lower myocardial expression of HSP10, HSP60, HTRA2, OMA1, SPG7, and YME1L, underwent heart transplantation or implantation of a left ventricular assist device earlier in life compared to those with the higher protein expression. Conclusions: In conclusion, our findings indicate that the reduced expression of several UPRmt effector proteins is associated with accelerated heart failure in patients, which, together with other results, indicates that impaired UPRmt may contribute to the pathogenesis of heart failure in humans. Full article
(This article belongs to the Special Issue Advanced Research on Heart Failure and Heart Transplantation)
Show Figures

Figure 1

36 pages, 4725 KiB  
Article
The Passage of Chaperonins to Extracellular Locations in Legionella pneumophila Requires a Functional Dot/Icm System
by Peter Robertson, David S. Allan and Rafael A. Garduño
Biomolecules 2025, 15(1), 91; https://doi.org/10.3390/biom15010091 - 9 Jan 2025
Viewed by 1313
Abstract
HtpB, the chaperonin of the bacterial pathogen L. pneumophila, is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support L. [...] Read more.
HtpB, the chaperonin of the bacterial pathogen L. pneumophila, is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support L. pneumophila’s lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood. To address this experimental gap, immunoelectron microscopy, trypsin-accessibility assays, and cell fractionation were used to localize HtpB in various L. pneumophila secretion mutants. Dot/Icm type IV secretion mutants displayed less surface-exposed HtpB and more periplasmic HtpB than parent strains. The analysis of periplasmic extracts and outer membrane vesicles of these mutants, where HtpB co-localized with bona fide periplasmic proteins, confirmed the elevated levels of periplasmic HtpB. Genetic complementation of the mutants recovered parent strain levels of surface-exposed and periplasmic HtpB. The export of GSK-tagged HtpB into the cytoplasm of infected cells was also Dot/Icm-dependent. The translocating role of the Dot/Icm system was not specific for HtpB because GroEL, the chaperonin of Escherichia coli, was found at the cell surface and accumulated in the periplasm of Dot mutants when expressed in L. pneumophila. These findings establish that a functional Dot/Icm system is required for HtpB to reach extracellular locations, but the mechanism by which cytoplasmic HtpB reaches the periplasm remains partially unidentified. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

13 pages, 8056 KiB  
Article
Transcriptomic Alterations in Spliceosome Components in Advanced Heart Failure: Status of Cardiac-Specific Alternative Splicing Factors
by Isaac Giménez-Escamilla, Lorena Pérez-Carrillo, Irene González-Torrent, Marta Delgado-Arija, Carlota Benedicto, Manuel Portolés, Estefanía Tarazón and Esther Roselló-Lletí
Int. J. Mol. Sci. 2024, 25(17), 9590; https://doi.org/10.3390/ijms25179590 - 4 Sep 2024
Cited by 1 | Viewed by 1607
Abstract
Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown. Therefore, we analysed the [...] Read more.
Heart failure (HF) is associated with global changes in gene expression. Alternative mRNA splicing (AS) is a key regulatory mechanism underlying these changes. However, the whole status of molecules involved in the splicing process in human HF is unknown. Therefore, we analysed the spliceosome transcriptome in cardiac tissue (n = 36) from control subjects and HF patients (with ischaemic (ICM) and dilated (DCM) cardiomyopathies) using RNA-seq. We found greater deregulation of spliceosome machinery in ICM. Specifically, we showed widespread upregulation of the E and C complex components, highlighting an increase in SNRPD2 (FC = 1.35, p < 0.05) and DHX35 (FC = 1.34, p < 0.001) mRNA levels. In contrast, we observed generalised downregulation of the A complex and cardiac-specific AS factors, such as the multifunctional protein PCBP2 (FC = −1.29, p < 0.001) and the RNA binding proteins QKI (FC = −1.35, p < 0.01). In addition, we found a relationship between SNPRD2 (an E complex component) and the left ventricular mass index in ICM patients (r = 0.779; p < 0.01). On the other hand, we observed the specific underexpression of DDX46 (FC = −1.29), RBM17 (FC = −1.33), SDE2 (FC = −1.35) and RBFOX1 (FC = −1.33), p < 0.05, in DCM patients. Therefore, these aetiology-related alterations may indicate the differential involvement of the splicing process in the development of ICM and DCM. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy of Cardiomyopathy)
Show Figures

Figure 1

23 pages, 6800 KiB  
Article
Hypoxia-Inducible Factor 1α Affects Yak Oocyte Maturation and Early Embryonic Development by Regulating Autophagy
by Xin Ma, Meng Wang, Jinglei Wang, Xiaohong Han, Xiaoqing Yang, Hui Zhang, Donglan Zhong, Shantong Qiu, Sijiu Yu, Libin Wang and Yangyang Pan
Antioxidants 2024, 13(7), 840; https://doi.org/10.3390/antiox13070840 - 14 Jul 2024
Cited by 3 | Viewed by 1663
Abstract
In animal assisted reproductive technology, the production of high-quality oocytes is crucial. The yak, having lived in the Qinghai-Tibet Plateau for an extended period, has reproductive cells that are regulated by hypoxia-inducible factor 1α (HIF-1α). This study aimed to investigate the impact of [...] Read more.
In animal assisted reproductive technology, the production of high-quality oocytes is crucial. The yak, having lived in the Qinghai-Tibet Plateau for an extended period, has reproductive cells that are regulated by hypoxia-inducible factor 1α (HIF-1α). This study aimed to investigate the impact of HIF-1α on yak oocyte maturation and early embryonic development in vitro through the regulation of autophagy. The in vitro maturation process of yak oocytes involved the addition of the HIF-1α inducer DFOM and the inhibitor LW6 to examine their effects on yak oocyte maturation, early embryonic development, cell autophagy, cytochrome P450s (CYP450s) enzyme expression, and cumulus diffusion factors. The findings revealed that DFOM significantly upregulated the expression of HIF-1α, resulting in increased the cumulus diffusion area, elevated first polar body expulsion rate of oocytes, enhanced mitochondrial and actin levels, decreased ROS production, and reduced early apoptosis levels of oocytes. Moreover, DFOM promoted the expression of autophagy-related proteins, CYP450s enzymes, and cumulus diffusion factors, thereby enhancing oocyte maturation and early embryonic development. Conversely, LW6 exhibited opposite effects. The inhibition of autophagy levels with 3-MA during DFOM treatment yielded similar outcomes. Furthermore, reducing autophagy led to increased apoptosis levels at all stages of early embryonic development, as well as a significant decrease in total cell number and ICM/TE ratio of blastocysts. Studies have shown that during the in vitro maturation of yak oocytes, HIF-1α can affect the cumulus expansion area of oocytes by regulating autophagy, the first polar body excretion rate, mitochondrial level, actin level, ROS and early apoptosis level, the CYP450s enzyme, and the expression of cumulus expansion factors, thereby improving the in vitro maturation and early embryonic development of yak oocytes. These findings offer valuable insights into the reproductive regulation mechanism of yaks in hypoxic environments and suggest potential strategies for the advancement of yak assisted reproductive technology. Full article
Show Figures

Figure 1

18 pages, 2690 KiB  
Article
Druggability Analysis of Protein Targets for Drug Discovery to Combat Listeria monocytogenes
by Robert Hanes, Yanhong Liu and Zuyi Huang
Microorganisms 2024, 12(6), 1073; https://doi.org/10.3390/microorganisms12061073 - 25 May 2024
Cited by 1 | Viewed by 2177
Abstract
Extensive research has been conducted to identify key proteins governing stress responses, virulence, and antimicrobial resistance, as well as to elucidate their interactions within Listeria monocytogenes. While these proteins hold promise as potential targets for novel strategies to control L. monocytogenes, [...] Read more.
Extensive research has been conducted to identify key proteins governing stress responses, virulence, and antimicrobial resistance, as well as to elucidate their interactions within Listeria monocytogenes. While these proteins hold promise as potential targets for novel strategies to control L. monocytogenes, given their critical roles in regulating the pathogen’s metabolism, additional analysis is needed to further assess their druggability—the chance of being effectively bound by small-molecule inhibitors. In this work, 535 binding pockets of 46 protein targets for known drugs (mainly antimicrobials) were first analyzed to extract 13 structural features (e.g., hydrophobicity) in a ligand–protein docking platform called Molsoft ICM Pro. The extracted features were used as inputs to develop a logistic regression model to assess the druggability of protein binding pockets, with a value of one if ligands can bind to the protein pocket. The developed druggability model was then used to evaluate 23 key proteins from L. monocytogenes that have been identified in the literature. The following proteins are predicted to be high-potential druggable targets: GroEL, FliH/FliI complex, FliG, FlhB, FlgL, FlgK, InlA, MogR, and PrfA. These findings serve as an initial point for future research to identify specific compounds that can inhibit druggable target proteins and to design experimental work to confirm their effectiveness as drug targets. Full article
(This article belongs to the Special Issue An Update on Listeria monocytogenes, Third Edition)
Show Figures

Figure 1

17 pages, 7613 KiB  
Article
Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii
by Rajesh Palanisamy, Yan Zhang and Guoquan Zhang
Pathogens 2024, 13(5), 405; https://doi.org/10.3390/pathogens13050405 - 14 May 2024
Cited by 1 | Viewed by 1936
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the [...] Read more.
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host–C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1β, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1β, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

14 pages, 1143 KiB  
Article
The Expression Patterns of Immune Checkpoint Molecules in Colorectal Cancer: An Analysis Based on Microsatellite Status
by Sanghyun An, Wanlu Li, Hyejin Do, Hye Youn Kwon, Bora Kim, Kwangmin Kim, Youngwan Kim and Mee-Yon Cho
Biomedicines 2024, 12(4), 752; https://doi.org/10.3390/biomedicines12040752 - 28 Mar 2024
Cited by 1 | Viewed by 1968
Abstract
Recently, immunotherapy has arisen as a novel treatment approach for patients with colorectal cancer (CRC), but the effectiveness of immunotherapy varies in these patients. We hypothesized that immune checkpoint molecules (ICMs), which are the targets of immunotherapy, are often exhibited concomitantly. Our objective [...] Read more.
Recently, immunotherapy has arisen as a novel treatment approach for patients with colorectal cancer (CRC), but the effectiveness of immunotherapy varies in these patients. We hypothesized that immune checkpoint molecules (ICMs), which are the targets of immunotherapy, are often exhibited concomitantly. Our objective was to investigate the patterns of ICM expression in patients with CRC and the differences in ICM expression based on microsatellite instability status. The immunohistochemical expression of programmed cell death protein 1 (PD-1), programmed cell death ligand 1 (PD-L1), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), and lymphocyte-activation gene 3 (LAG-3) in the tumor center and periphery was assessed in patients with non-metastatic colorectal cancer. We enrolled 83 patients with CRC: a total of 40 microsatellite-stable (MSS) and 43 microsatellite-instability-high (MSI-H) cancer patients. PD-L1 was more frequently expressed in the tumor center in the MSI-H patients with than that in the MSS patients (18 [41.9%] vs. 3 [7.5%], respectively; p < 0.001), and the same trend was observed for TIM-3 expression (30 [69.8%] vs. 19 [47.5%], respectively; p = 0.047). The concomitant expression of two or more ICMs was more frequently observed than no expression or the expression of a single molecule in both the MSS and MSI-H groups; a total of 34 (79.7%) patients with MSI-H cancer and 23 (57.5%) with MSS cancer showed ICM expression at the tumor center, whereas 34 (79.7%) patients with MSI-H cancer and 22 (55%) with MSS cancer showed expression at the tumor periphery. Patients with the genetic characteristics of MSI-H cancer showed higher expression levels of ICMs than those in patients with MSS cancer, and predominantly, two or more ICMs were concurrently expressed. Our findings highlight the potential efficacy of the dual-blockade approach in immunotherapy, particularly in patients with MSI-H CRC. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

14 pages, 2361 KiB  
Article
Comprehensive Assessment of CFTR Modulators’ Therapeutic Efficiency for N1303K Variant
by Anna Efremova, Nataliya Kashirskaya, Stanislav Krasovskiy, Yuliya Melyanovskaya, Maria Krasnova, Diana Mokrousova, Nataliya Bulatenko, Elena Kondratyeva, Oleg Makhnach, Tatiana Bukharova, Rena Zinchenko, Sergey Kutsev and Dmitry Goldshtein
Int. J. Mol. Sci. 2024, 25(5), 2770; https://doi.org/10.3390/ijms25052770 - 27 Feb 2024
Cited by 5 | Viewed by 2272
Abstract
p.Asn1303Lys (N1303K) is a common missense variant of the CFTR gene, causing cystic fibrosis (CF). In this study, we initially evaluated the influence of CFTR modulators on the restoration of N1303K-CFTR function using intestinal organoids derived from four CF patients expressing the [...] Read more.
p.Asn1303Lys (N1303K) is a common missense variant of the CFTR gene, causing cystic fibrosis (CF). In this study, we initially evaluated the influence of CFTR modulators on the restoration of N1303K-CFTR function using intestinal organoids derived from four CF patients expressing the N1303K variant. The forskolin-induced swelling assay in organoids offered valuable insights about the beneficial effects of VX-770 + VX-661 + VX-445 (Elexacaftor + Tezacaftor + Ivacaftor, ETI) on N1303K-CFTR function restoration and about discouraging the prescription of VX-770 + VX-809 (Ivacaftor + Lumacaftor) or VX-770 + VX-661 (Ivacaftor + Tezacaftor) therapy for N1303K/class I patients. Then, a comprehensive assessment was conducted on an example of one patient with the N1303K/class I genotype to examine the ETI effect on the restoration of N1303K-CFTR function using in vitro the patient’s intestinal organoids, ex vivo the intestinal current measurements (ICM) method and assessment of the clinical status before and after targeted therapy. All obtained results are consistent with each other and have proven the effectiveness of ETI for the N1303K variant. ETI produced a significant positive effect on forskolin-induced swelling in N1303K/class I organoids indicating functional improvement of the CFTR protein; ICM demonstrated that ETI therapy restored CFTR function in the intestinal epithelium after three months of treatment, and the patient improved his clinical status and lung function, increased his body mass index (BMI) and reduced the lung pathogenic flora diversity, surprisingly without improving the sweat test results. Full article
(This article belongs to the Special Issue Research Advances on Cystic Fibrosis and CFTR Protein)
Show Figures

Figure 1

15 pages, 5571 KiB  
Article
Alterations in Mitochondrial Oxidative Phosphorylation System: Relationship of Complex V and Cardiac Dysfunction in Human Heart Failure
by Isaac Giménez-Escamilla, Carlota Benedicto, Lorena Pérez-Carrillo, Marta Delgado-Arija, Irene González-Torrent, Roger Vilchez, Luis Martínez-Dolz, Manuel Portolés, Estefanía Tarazón and Esther Roselló-Lletí
Antioxidants 2024, 13(3), 285; https://doi.org/10.3390/antiox13030285 - 26 Feb 2024
Cited by 6 | Viewed by 3136
Abstract
Heart failure (HF) is a disease related to bioenergetic mitochondrial abnormalities. However, the whole status of molecules involved in the oxidative phosphorylation system (OXPHOS) is unknown. Therefore, we analyzed the OXPHOS transcriptome of human cardiac tissue by RNA-seq analyses (mRNA n = 36; [...] Read more.
Heart failure (HF) is a disease related to bioenergetic mitochondrial abnormalities. However, the whole status of molecules involved in the oxidative phosphorylation system (OXPHOS) is unknown. Therefore, we analyzed the OXPHOS transcriptome of human cardiac tissue by RNA-seq analyses (mRNA n = 36; ncRNA n = 30) in HF patients (ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM)) and control subjects. We detected 28 altered genes in these patients, highlighting greater deregulation in ICM. Specifically, we found a general overexpression of complex V (ATP synthase) elements, among them, ATP5I (ICM, FC = 2.04; p < 0.01), ATP5MJ (ICM, FC = 1.33, p < 0.05), and ATP5IF1 (ICM, FC = 1.81; p < 0.001), which presented a significant correlation with established echocardiographic parameters of cardiac remodeling and ventricular function as follows: left ventricular end-systolic (p < 0.01) and end-diastolic (p < 0.01) diameters, and ejection fraction (p < 0.05). We also detected an increase in ATP5IF1 protein levels (ICM, FC = 1.75; p < 0.01) and alterations in the microRNA expression levels of miR-208b-3p (ICM, FC = −1.44, p < 0.001), miR-483-3p (ICM, FC = 1.37, p < 0.01), regulators of ATP5I. Therefore, we observed the deregulation of the OXPHOS transcriptome in ICM patients, highlighting the overexpression of complex V and its relationship with cardiac remodeling and function. Full article
Show Figures

Graphical abstract

17 pages, 5016 KiB  
Article
The Na/K-ATPase α1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes
by Liquan Cai, Marco T. Pessoa, Yingnyu Gao, Sidney Strause, Moumita Banerjee, Jiang Tian, Zijian Xie and Sandrine V. Pierre
Biomedicines 2023, 11(12), 3207; https://doi.org/10.3390/biomedicines11123207 - 2 Dec 2023
Cited by 2 | Viewed by 2606
Abstract
Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also [...] Read more.
Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also a critical cellular determinant of cardiac repair and remodeling. To assess the impact of the proposed NKA/Src regulatory axis on cardiac mitochondrial metabolic function, we used a gene targeting approach in human cardiac myocytes. Human induced pluripotent stem cells (hiPSC) expressing an Src-signaling null mutant (A420P) form of the NKA α1 polypeptide were generated using CRISPR/Cas9-mediated genome editing. Total cellular Na/K-ATPase activity remained unchanged in A420P compared to the wild type (WT) hiPSC, but baseline phosphorylation levels of Src and ERK1/2 were drastically reduced. Both WT and A420P mutant hiPSC readily differentiated into cardiac myocytes (iCM), as evidenced by marker gene expression, spontaneous cell contraction, and subcellular striations. Total NKA α1-3 protein expression was comparable in WT and A420P iCM. However, live cell metabolism assessed functionally by Seahorse extracellular flux analysis revealed significant reductions in both basal and maximal rates of mitochondrial respiration, spare respiratory capacity, ATP production, and coupling efficiency. A significant reduction in ROS production was detected by fluorescence imaging in live cells, and confirmed by decreased cellular protein carbonylation levels in A420P iCM. Taken together, these data provide genetic evidence for a role of NKA α1/Src in the tonic stimulation of basal mitochondrial metabolism and ROS production in human cardiac myocytes. This signaling axis in cardiac myocytes may provide a new approach to counteract mitochondrial dysfunction in cardiometabolic diseases. Full article
(This article belongs to the Special Issue The Role of Na,K-ATPase in Human Health: From Structure to Function)
Show Figures

Figure 1

10 pages, 1225 KiB  
Article
Differences in Androgen Receptor Expression in Human Heart Tissue in Various Types of Cardiomyopathy and in Aortic Valve Stenosis
by Katja Eildermann, Sabrina Goldmann, Ulrich Krause, David Backhoff, Friedrich A. Schöndube, Thomas Paul, Thomas Quentin and Matthias J. Müller
J. Cardiovasc. Dev. Dis. 2023, 10(11), 466; https://doi.org/10.3390/jcdd10110466 - 17 Nov 2023
Cited by 6 | Viewed by 2557
Abstract
Background: Sex-specific differences in heart disease outcomes are influenced by the levels of the steroid hormones, estrogen and testosterone. While the roles of estrogen receptors in cardiac disease are well-studied in animals and humans, respective research on androgen receptors (AR) is limited. [...] Read more.
Background: Sex-specific differences in heart disease outcomes are influenced by the levels of the steroid hormones, estrogen and testosterone. While the roles of estrogen receptors in cardiac disease are well-studied in animals and humans, respective research on androgen receptors (AR) is limited. Here we investigate AR protein and mRNA expression in human myocardium of various cardiac diseases. Methods: AR expression was analyzed by western blotting in myocardium from human non-failing hearts (NF, n = 6) and patients with aortic stenosis (AS, n = 6), hypertrophic cardiomyopathy (HCM, n = 7), dilated cardiomyopathy (DCM, n = 7), and ischemic cardiomyopathy (ICM, n = 7). Using an AR45-specific antibody, a subsequent western blot assessed samples from male and female patients with HCM (n = 10) and DCM (n = 10). The same sample set was probed for full-length AR and AR45 mRNA expression. Immunohistochemistry (IHC) localized AR in myocardium from HCM and AS hearts. Results: Full-length AR was notably enriched in AS and HCM hearts compared to ICM, DCM, and NF. Similarly, AR45 was more abundant in HCM than in DCM. In contrast to the pattern observed for AR protein, full-length AR mRNA levels were lower in HCM compared to DCM, with no discernible difference for the AR45 isoform. Although gender differences in AR expression were not detected in western blots or qRT-PCR, IHC showed stronger nuclear AR signals in males than in females. Conclusions: Our findings indicate disease-specific regulation of AR mRNA and/or AR protein in cardiac hypertrophy, underscoring a potential role in this cardiac pathology. Full article
Show Figures

Figure 1

16 pages, 4138 KiB  
Article
The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19
by Natalia Linkova, Vladimir Khavinson, Anastasiia Diatlova, Michael Petukhov, Elizaveta Vladimirova, Maria Sukhareva and Anastasiia Ilina
Int. J. Mol. Sci. 2023, 24(17), 13377; https://doi.org/10.3390/ijms241713377 - 29 Aug 2023
Cited by 1 | Viewed by 2313
Abstract
Thymalin is an immunomodulatory drug containing a polypeptide extract of thymus that has demonstrated efficacy in the therapy of acute respiratory distress syndrome and chronic obstructive pulmonary disease, as well as in complex therapy related to severe COVID-19 in middle-aged and elderly patients.. [...] Read more.
Thymalin is an immunomodulatory drug containing a polypeptide extract of thymus that has demonstrated efficacy in the therapy of acute respiratory distress syndrome and chronic obstructive pulmonary disease, as well as in complex therapy related to severe COVID-19 in middle-aged and elderly patients.. KE and EW dipeptides are active substances of Thymalin. There is evidence that KE stimulates cellular immunity and nonspecific resistance in organisms, exerting an activating effect on macrophages, blood lymphocytes, thymocytes, and neutrophils, while EW reduces angiotensin-induced vasoconstriction and preserves endothelium-dependent vascular relaxation by inhibiting ACE2, the target protein of SARS-CoV-2. However, the mechanism of the immunomodulatory action of Thymalin, KE, and EW during COVID-19 remains unclear. To identify the potential mechanism of action underlying the immunomodulatory activity of Thymalin and its active components, EW and KE dipeptides, we assessed inflammatory response in the context of COVID-19. Interactions between EW and KE dipeptides and double-stranded DNA (dsDNA) were investigated by molecular modeling and docking using ICM-Pro. Analysis of the possible effect of EW and KE dipeptides on gene expression and protein synthesis involved in the pathogenesis of COVID-19 was conducted through the use of bioinformatics methods, including a search for promoter sequences in the Eukaryotic Promoter Database, the determination of genes associated with the development of COVID-19 using the PathCards database of human biological pathways (pathway unification database), identification of the relationship between proteins through cluster analysis in the STRING database (‘Search Tool for Retrieval of Interacting Genes/Proteins’), and assessment of the functional enrichment of protein–protein interaction (PPI) using the terms of gene ontology (GO) and the Markov cluster algorithm (MCL). After that, in vitro studying of a lipopolysaccharide (LPS)-induced model of inflammation using human peripheral blood mononuclear cells was performed. ELISA was applied to assess the level of cytokines (IL-1β, IL-6, TNFα) in the supernatant of cells with or without the impact of EW and KE peptides. Blood samples were obtained from four donors; for each cytokine, ELISA was performed 2–4 times, with two parallel experimental or control samples for each experiment (experiments to assess the effects of peptides on LPS-stimulated cells were repeated four times, while additional experiments with unstimulated cells were performed two times). Using molecular docking, GGAG was found to be the best dsDNA sequence in the classical B-form for binding the EW dipeptide, while GCGC is the preferred dsDNA sequence in the curved nucleosomal form for the KE dipeptide. Cluster analysis revealed that potential target genes for the EW and KE peptides encode the AKT1 and AKT2 proteins involved in the development of the cytokine storm. The specific targets for the EW peptide are the ACE2 and CYSLTR1 genes, and specific target for the KE peptide is the CHUK gene. Protein products of the ACE2, CYSLTR1, and CHUK genes are functionally associated with IL-1β, IL-6, TNF-α, IL-4, and IL-10 cytokines. An in vitro model of an inflammatory reaction demonstrated that Thymalin and EW and KE dipeptides reduced the synthesis of IL-1β, IL-6, and TNF-α cytokines in human peripheral blood mononuclear cells by 1.4–6.0 times. The immunomodulatory effect of Thymalin under the inflammatory response conditions in COVID-19 is based on the potential ability of its active components, EW and KE dipeptides, to regulate protein synthesis involved in the development of the cytokine storm. Full article
(This article belongs to the Special Issue Updates in Cell and Molecular Mechanisms of Autoimmune Diseases)
Show Figures

Figure 1

12 pages, 2847 KiB  
Article
Clinical and Genetic Characteristics of a Patient with Cystic Fibrosis with a Complex Allele [E217G;G509D] and Functional Evaluation of the CFTR Channel
by Elena Kondratyeva, Yuliya Melyanovskaya, Anna Efremova, Mariya Krasnova, Diana Mokrousova, Nataliya Bulatenko, Nika Petrova, Alexander Polyakov, Tagui Adyan, Valeriia Kovalskaia, Tatiana Bukharova, Andrey Marakhonov, Rena Zinchenko, Elena Zhekaite, Artem Buhonin and Dmitry Goldshtein
Genes 2023, 14(9), 1705; https://doi.org/10.3390/genes14091705 - 28 Aug 2023
Cited by 7 | Viewed by 2271
Abstract
The intricate nature of complex alleles presents challenges in the classification of CFTR gene mutations, encompassing potential disease-causing, neutral, or treatment-modulating effects. Notably, the complex allele [E217G;G509D] remains absent from international databases, with its pathogenicity yet to be established. Assessing the functionality of [...] Read more.
The intricate nature of complex alleles presents challenges in the classification of CFTR gene mutations, encompassing potential disease-causing, neutral, or treatment-modulating effects. Notably, the complex allele [E217G;G509D] remains absent from international databases, with its pathogenicity yet to be established. Assessing the functionality of apical membrane ion channels in intestinal epithelium employed the intestinal current measurements (ICM) method, using rectal biopsy material. The effectivity of CFTR-targeted therapy was evaluated using a model of intestinal organoids of a patient harboring the genotype F508del/[E217G;G509D]. ICM analysis revealed diminished chloride channel function. Remarkably, [E217G;G509D] presence within intestinal organoids correlated with heightened residual CFTR function. Employing CFTR modulators facilitated the restoration of the functional CFTR protein. This multifaceted study intertwines genetic investigations, functional analyses, and therapeutic interventions, shedding light on the intricate interplay of complex alleles within CFTR mutations. The results highlight the potential of targeted CFTR modulators to restore functional integrity, offering promise for advancing precision treatments in cystic fibrosis management. Full article
(This article belongs to the Special Issue Genetic Architecture in Complex Traits)
Show Figures

Figure 1

13 pages, 5379 KiB  
Review
Mechanism and Modulation of SidE Family Proteins in the Pathogenesis of Legionella pneumophila
by Yongchao Xie, Yi Zhang, Yong Wang and Yue Feng
Pathogens 2023, 12(4), 629; https://doi.org/10.3390/pathogens12040629 - 21 Apr 2023
Cited by 5 | Viewed by 2527
Abstract
Legionella pneumophila is the causative agent of Legionnaires’ disease, causing fever and lung infection, with a death rate up to 15% in severe cases. In the process of infection, Legionella pneumophila secretes over 330 effectors into host cell via the Dot/Icm type IV secretion [...] Read more.
Legionella pneumophila is the causative agent of Legionnaires’ disease, causing fever and lung infection, with a death rate up to 15% in severe cases. In the process of infection, Legionella pneumophila secretes over 330 effectors into host cell via the Dot/Icm type IV secretion system to modulate multiple host cellular physiological processes, thereby changing the environment of the host cell and promoting the growth and propagation of the bacterium. Among these effector proteins, SidE family proteins from Legionella pneumophila catalyze a non-canonical ubiquitination reaction, which combines mono-ADP-ribosylation and phosphodiesterase activities together to attach ubiquitin onto substrates. Meanwhile, the activity of SidE family proteins is also under multiple modulations by other effectors. Herein we summarize the key insights into recent studies in this area, emphasizing the tight link between the modular structure of SidE family proteins and the pathogen virulence as well as the fundamental mechanism and modulation network for further extensive research. Full article
(This article belongs to the Special Issue ADP-Ribosylation in Pathogens)
Show Figures

Figure 1

Back to TopTop