The Absence of Bovine Serum Albumin (BSA) in Preimplantation Culture Media Impairs Embryonic Development and Induces Metabolic Alterations in Mouse Offspring
Abstract
1. Introduction
2. Results
2.1. Short-Term Effects of BSA Absence: Blastocyst Development Under BSA-Free Culture at Varying Time Points and Durations
2.2. Long-Term Effects on CZB- and CZB-BSA-Derived Offspring on Body Weight
2.3. Long-Term Effects of the Absence of BSA on Glucose Metabolism in Adult Mice
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Reagents
4.3. In Vitro Fertilization (IVF)
4.4. Experimental Groups
4.5. Immunostaining
4.6. Embryo Transfer
4.7. Oral Glucose Tolerance Test (OGTT)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biggers, J.D.; Racowsky, C. The Development of Fertilized Human Ova to the Blastocyst Stage in KSOMAA Medium: Is a Two-Step Protocol Necessary? Reprod. Biomed. Online 2002, 5, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Gardner, D.K. Understanding Cellular Disruptions during Early Embryo Development That Perturb Viability and Fetal Development. Reprod. Fertil. Dev. 2005, 17, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.; Eckert, J.J.; et al. Origins of Lifetime Health around the Time of Conception: Causes and Consequences. Lancet 2018, 391, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. The Origins of the Developmental Origins Theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A. Living with the Past: Evolution, Development, and Patterns of Disease. Science 2004, 305, 1733–1736. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A.; Jirtle, R.L. Early Nutrition, Epigenetic Changes at Transposons and Imprinted Genes, and Enhanced Susceptibility to Adult Chronic Diseases. Nutrition 2004, 20, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, M.A.; Fleming, T.P.; Watkins, A.J. Periconceptional Environment and the Developmental Origins of Disease. J. Endocrinol. 2019, 242, T33–T49. [Google Scholar] [CrossRef] [PubMed]
- Leese, H.J. The Formation and Function of Oviduct Fluid. J. Reprod. Fertil. 1988, 82, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Trounson, A.; Gardner, D.K. Handbook of In Vitro Fertilization, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Bavister, B.D. Culture of Preimplantation Embryos: Facts and Artifacts. Hum. Reprod. Update 1995, 1, 91–148. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, S.H.; Bavister, B.D. Culture of One-Cell Hamster Embryos with Water Soluble Vitamins: Pantothenate Stimulates Blastocyst Production. Hum. Reprod. 2000, 15, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Shahata, M.A.M.; Al-Natsha, S.D. Formulation of a Protein-Free Medium for Human Assisted Reproduction. Hum. Reprod. 2000, 15, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Pool, T.B. Recent Advances in the Production of Viable Human Embryos in Vitro. Reprod. Biomed. Online 2002, 4, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.; Wigglesworth, K.; Eppig, J.J.; Schultz, R.M. Preimplantation Development of Mouse Embryos in KSOM: Augmentation by Amino Acids and Analysis of Gene Expression. Mol. Reprod. Dev. 1995, 41, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Biggers, J.D.; McGinnis, L.K.; Raffin, M. Amino Acids and Preimplantation Development of the Mouse in Protein-Free Potassium Simplex Optimized Medium. Biol. Reprod. 2000, 63, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Dumollard, R.; Duchen, M.; Carroll, J. The Role of Mitochondrial Function in the Oocyte and Embryo. Curr. Top. Dev. Biol. 2007, 77, 21–49. [Google Scholar] [CrossRef] [PubMed]
- Krisher, R.L.; Lane, M.; Bavister, B.D. Developmental Competence and Metabolism of Bovine Embryos Cultured in Semi-Defined and Defined Culture Media. Biol. Reprod. 1999, 60, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Natsuyama, S.; Noda, Y.; Narimoto, K.; Mori, T. Role of Protein Supplements in the Culture of Mouse Embryos. Theriogenology 1993, 40, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Biggers, J.D.; Summers, M.C.; McGinnis, L.K. Polyvinyl Alcohol and Amino Acids as Substitutes for Bovine Serum Albumin in Culture Media for Mouse Preimplantation Embryos. Hum. Reprod. Update 1997, 3, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Orsi, N.M.; Leese, H.J. Amino Acid Metabolism of Preimplantation Bovine Embryos Cultured with Bovine Serum Albumin or Polyvinyl Alcohol. Theriogenology 2004, 61, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.P.; Velazquez, M.A.; Eckert, J.J.; Lucas, E.S.; Watkins, A.J. Nutrition of Females during the Peri-Conceptional Period and Effects on Foetal Programming and Health of Offspring. Anim. Reprod. Sci. 2012, 130, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Ríos, A.; Maillo, V.; Muñoz, M.; Gutiérrez-Adán, A.; Carrocera, S.; Martín-González, D.; Fernandez-Buznego, A.; Gómez, E. Short- and Long-Term Outcomes of the Absence of Protein during Bovine Blastocyst Formation in Vitro. Reprod. Fertil. Dev. 2017, 29, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.G.; Sherman, A.N.M.; Allen, N.W.; Mcgowan, L.T.; Tervit, H.R. Total Protein Content and Protein Synthesis within Pre-Elongation Stage Bovine Embryos. Mol. Reprod. Dev. 1998, 50, 139–145. [Google Scholar] [CrossRef]
- Gómez, E.; Caamaño, J.N.; Corrales, F.J.; Díez, C.; Correia-Álvarez, E.; Martín, D.; Trigal, B.; Carrocera, S.; Mora, M.I.; Pello-Palma, J.; et al. Embryonic Sex Induces Differential Expression of Proteins in Bovine Uterine Fluid. J. Proteome Res. 2013, 12, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, S.; Yoshiba, N.; Ushijima, H.; Watanabe, S.; Nakahara, T. Morphology and Proportion of Inner Cell Mass of Bovine Blastocysts Fertilized in Vitro and in Vivo. Reproduction 1990, 90, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, B.; Bonilla, L.; Block, J.; Fear, J.M.; Bonilla, A.Q.S.; Hansen, P.J. Colony-Stimulating Factor 2 (CSF-2) Improves Development and Posttransfer Survival of Bovine Embryos Produced in Vitro. Endocrinology 2009, 150, 5046–5054. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.T.; Jang, G.; Ko, K.H.; Lee, W.W.; Park, H.J.; Kim, J.J.; Lee, S.H.; Hwang, W.S.; Lee, B.C.; Kang, S.K. Improved in Vitro Bovine Embryo Development and Increased Efficiency in Producing Viable Calves Using Defined Media. Theriogenology 2007, 67, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, G.; Wrenzycki, C.; Herrmann, D.; Duchi, R.; Kruip, T.; Niemann, H.; Galli, C. Cellular and Molecular Deviations in Bovine In Vitro-Produced Embryos Are Related to the Large Offspring Syndrome. Biol. Reprod. 2002, 67, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.E.; Sathyapalan, T.; Randeva, H.; Atkin Stephen, L. Editorial: Internal and External Factors Affecting Polycystic Ovary Syndrome. Front. Endocrinol. 2025, 16, 1594718. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.S.; Harris, D.C.; Daneshmand, S.T.; Shapiro, B.S. Quantitative Grading of a Human Blastocyst: Optimal Inner Cell Mass Size and Shape. Fertil. Steril. 2001, 76, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Brosens, J.J.; Bennett, P.R.; Abrahams, V.M.; Ramhorst, R.; Coomarasamy, A.; Quenby, S.; Lucas, E.S.; McCoy, R.C. Maternal Selection of Human Embryos in Early Gestation: Insights from Recurrent Miscarriage. Semin. Cell Dev. Biol. 2022, 131, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Dean, W.; Brown, D.; Reik, W.; Feil, R. Culture of Preimplantation Mouse Embryos Affects Fetal Development and the Expression of Imprinted Genes. Biol. Reprod. 2001, 64, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, J.C.; Land, J.A.; Van Montfoort, A.P.; Nelissen, E.C.; Coonen, E.; Derhaag, J.G.; Schreurs, I.L.; Dunselman, G.A.; Kester, A.D.; Geraedts, J.P.; et al. Effect of in Vitro Culture of Human Embryos on Birthweight of Newborns. Hum. Reprod. 2010, 25, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.A.; Yamazaki, Y.; Yamamoto, M.; Lin, Y.; Melhorn, S.J.; Krause, E.G.; Woods, S.C.; Yanagimachi, R.; Sakai, R.R.; Tamashiro, K.L.K. Glucose Parameters Are Altered in Mouse Offspring Produced by Assisted Reproductive Technologies and Somatic Cell Nuclear Transfer. Biol. Reprod. 2010, 83, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.W.; Ishiyama, S.; Matsumoto, S.; Mochizuki, K.; Kishigami, S. From Lessons on the Long-Term Effects of the Preimplantation Environment on Later Health to a “Modified ART-DOHaD” Animal Model. Reprod. Med. Biol. 2022, 21, e12469. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Heilbronn, L.K. The Health Outcomes of Human Offspring Conceived by Assisted Reproductive Technologies (ART). J. Dev. Orig. Health Dis. 2017, 8, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Sferruzzi-Perri, A.N.; Macpherson, A.M.; Roberts, C.T.; Robertson, S.A. Csf2 Null Mutation Alters Placental Gene Expression and Trophoblast Glycogen Cell and Giant Cell Abundance in Mice. Biol. Reprod. 2009, 81, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Vrooman, L.A.; Rhon-Calderon, E.A.; Chao, O.Y.; Nguyen, D.K.; Narapareddy, L.; Dahiya, A.K.; Putt, M.E.; Schultz, R.M.; Bartolomei, M.S. Assisted Reproductive Technologies Induce Temporally Specific Placental Defects and the Preeclampsia Risk Marker SFLT1 in Mouse. Development 2020, 147, dev186551. [Google Scholar] [CrossRef] [PubMed]
- Steegers-Theunissen, R.P.M.; Twigt, J.; Pestinger, V.; Sinclair, K.D. The Periconceptional Period, Reproduction and Long-Term Health of Offspring: The Importance of One-Carbon Metabolism. Hum. Reprod. Update 2013, 19, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Feuer, S.; Rinaudo, P. From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare 2016, 4, 51. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F. Sex Differences in Metabolic Homeostasis, Diabetes, and Obesity. Biol. Sex Differ. 2015, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Alvarez, P.; Rizos, D.; Lonergan, P.; Gutierrez-Adan, A. Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 2011, 141, 563. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.Y.; Wild, A.E.; Roberts, P.; Willis, A.C.; Fleming, T.P. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 2000, 127, 4195–4202. [Google Scholar] [CrossRef] [PubMed]
- Watkins, A.J.; Ursell, E.; Panton, R.; Papenbrock, T.; Hollis, L.; Cunningham, C.; Wilkins, A.; Perry, V.H.; Sheth, B.; Kwong, W.Y.; et al. Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 2008, 78, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Sex-Specific Placental Responses in Fetal Development. Endocrinology 2015, 156, 3422–3434. [Google Scholar] [CrossRef] [PubMed]
- Isaji, Y.; Yoshida, K.; Imai, H.; Yamada, M. An Intracytoplasmic Injection of Deionized Bovine Serum Albumin Immediately after Somatic Cell Nuclear Transfer Enhances Full-Term Development of Cloned Mouse Embryos. J. Reprod. Dev. 2015, 61, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Karagenc, L.; Lane, M.; Gardner, D.K. Granulocyte–macrophage colony-stimulating factor stimulates mouse blastocyst inner cell mass development only when media lack human serum albumin. Reprod. Biomed. Online 2005, 10, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Cooper, C.; Thornburg, K.L. Effect of in Utero and Early-Life Conditions on Adult Health and Disease. N. Engl. J. Med. 2008, 359, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Bari, M.W.; Kishigami, S. Chloroquine Inhibits Artificial Oocyte Activation Induced by Ethanol or Sr2+ but Not by Sperm in Mice. J. Reprod. Dev. 2025, 71, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.; Moinipanah, R.; Steinberg, J.M.; Weathersbee, P.S. Successful Human in Vitro Fertilization Using a Modified Human Tubal Fluid Medium Lacking Glucose and Phosphate Ions. Fertil. Steril. 1995, 63, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Chatot, C.L.; Lewis, L.J.; Torres, I.; Ziomek, C.A. Development of 1-Cell Embryos from Different Strains of Mice in CZB Medium. Biol. Reprod. 1990, 42, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Fulka, H.; Langerova, A. The Maternal Nucleolus Plays a Key Role in Centromere Satellite Maintenance during the Oocyte to Embryo Transition. Development 2014, 141, 1694–1704. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.W.; Morishita, Y.; Kishigami, S. Heterogeneity of Nucleolar Morphology in Four-Cell Mouse Embryos after IVF: Association with Developmental Potential. Anim. Sci. J. 2023, 94, e13907. [Google Scholar] [CrossRef] [PubMed]
Experimental Group | No. of Embryos Developed (Means of Percentages ± SEM) | ||||
---|---|---|---|---|---|
2PN | 2-Cell | 4-Cell | Morula | Blastocyst | |
CZB (Control) | 127 | 127 (100 ± 0) | 127 (100 ± 0) | 127 (100 ± 0) | 125 (97 ± 2.4) |
CZB-BSA(96h) | 138 | 138 (100 ± 0) | 135 (98 ± 4.9) | 133 (97 ± 5.7) | 124 (91 ± 7.4) * |
CZB-BSA(E24h) | 53 | 53 (100 ± 0) | 53 (100 ± 0) | 53 (100 ± 0) | 51 (99 ± 3.7) |
CZB-BSA(E48h) | 90 | 90 (100 ± 0) | 90 (100 ± 0) | 89 (99 ± 4.4) | 89 (99 ± 4.9) |
CZB-BSA(24h–96h) | 94 | 94 (100 ± 0) | 93 (98 ± 3.6) | 92 (98 ± 7.5) | 89 (95 ± 8.0) |
CZB-BSA(48h–96h) | 106 | 106 (100 ± 0) | 106 (100 ± 0) | 105 (99 ± 2.7) | 101 (96 ± 6.8) |
CZB-BSA(72h–96h) | 86 | 86 (100 ± 0) | 86 (100 ± 0) | 86 (100 ± 0) | 82 (95 ± 7.0) |
Experimental Group | No. of Transferred Embryos | No. of Recipients | No. of Live Offspring | Means of Birth Rate % ± SEM | Average Body Weight at Birth (19.5 Days) g ± SEM |
---|---|---|---|---|---|
CZB | 63 | 6 | 25 | 40 ± 2.3 | 2.4 ± 0.3 |
CZB-BSA | 93 | 7 | 41 | 44 ± 2.9 | 2.3 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jharna, J.F.; Bari, M.W.; Alfian, N.F.; Kishigami, S. The Absence of Bovine Serum Albumin (BSA) in Preimplantation Culture Media Impairs Embryonic Development and Induces Metabolic Alterations in Mouse Offspring. Int. J. Mol. Sci. 2025, 26, 6989. https://doi.org/10.3390/ijms26146989
Jharna JF, Bari MW, Alfian NF, Kishigami S. The Absence of Bovine Serum Albumin (BSA) in Preimplantation Culture Media Impairs Embryonic Development and Induces Metabolic Alterations in Mouse Offspring. International Journal of Molecular Sciences. 2025; 26(14):6989. https://doi.org/10.3390/ijms26146989
Chicago/Turabian StyleJharna, Jannatul Ferdous, Md Wasim Bari, Norermi Firzana Alfian, and Satoshi Kishigami. 2025. "The Absence of Bovine Serum Albumin (BSA) in Preimplantation Culture Media Impairs Embryonic Development and Induces Metabolic Alterations in Mouse Offspring" International Journal of Molecular Sciences 26, no. 14: 6989. https://doi.org/10.3390/ijms26146989
APA StyleJharna, J. F., Bari, M. W., Alfian, N. F., & Kishigami, S. (2025). The Absence of Bovine Serum Albumin (BSA) in Preimplantation Culture Media Impairs Embryonic Development and Induces Metabolic Alterations in Mouse Offspring. International Journal of Molecular Sciences, 26(14), 6989. https://doi.org/10.3390/ijms26146989