Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = hypoxic burden

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1873 KB  
Case Report
Adaptive Servo-Ventilation for Central Sleep Apnea in an Anemic Patient with Cardiac Disease: A Case Report
by Bianca Domokos-Gergely, Gabriel-Flaviu Brișan and Doina Todea
Reports 2025, 8(3), 140; https://doi.org/10.3390/reports8030140 - 7 Aug 2025
Viewed by 845
Abstract
Background and Clinical Significance: Obstructive sleep apnea (OSA) is a common comorbidity in patients with cardiac and metabolic disorders. The coexistence of central sleep apnea with Cheyne–Stokes breathing (CSA-CSB) in heart failure patients, especially those with preserved ejection fraction (HFpEF), represents a [...] Read more.
Background and Clinical Significance: Obstructive sleep apnea (OSA) is a common comorbidity in patients with cardiac and metabolic disorders. The coexistence of central sleep apnea with Cheyne–Stokes breathing (CSA-CSB) in heart failure patients, especially those with preserved ejection fraction (HFpEF), represents a diagnostic and therapeutic challenge. Data on continuous positive airway pressure (CPAP) failure and successful adaptation to servo-ventilation (ASV) in the context of complex comorbidities remain limited. Case Presentation: We present the case of a 74-year-old male with a history of type 2 diabetes mellitus, paroxysmal atrial fibrillation, HFpEF, essential hypertension, and bladder carcinoma. He was referred for pre-operative OSA screening, reporting excessive daytime sleepiness, insomnia, and witnessed apneas. Initial respiratory polygraphy revealed severe sleep-disordered breathing with dominant CSA-CSB and moderate OSA. Laboratory investigations also revealed severe iron-deficiency anemia, which was managed with parenteral iron supplementation. The patient underwent CPAP titration, which led to modest improvement and residual high apnea–hypopnea index (AHI). After persistent symptoms and an inadequate CPAP response, an ASV device was initiated with significant clinical and respiratory improvement, demonstrating normalization of hypoxic burden and optimal adherence. Conclusions: CSA-CSB in HFpEF patients with anemia poses unique therapeutic difficulties. This case highlights the importance of individualized diagnostic and therapeutic strategies, including transitioning to ASV in CPAP-refractory cases, which can lead to improved adherence, reduced hypoxia, and better overall outcomes in high-risk patients. Full article
Show Figures

Figure 1

24 pages, 1321 KB  
Review
Therapeutic Potential and Mechanisms of Mesenchymal Stem Cells in Coronary Artery Disease: Narrative Review
by Tejas Patel, Jana Mešić, Shai Meretzki, Tomer Bronshtein, Petar Brlek, Vered Kivity, Samir B. Pancholy, Matko Petrović and Dragan Primorac
Int. J. Mol. Sci. 2025, 26(11), 5414; https://doi.org/10.3390/ijms26115414 - 5 Jun 2025
Viewed by 2179
Abstract
Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality despite advances in medical and interventional therapies. Mesenchymal stem cell (MSC) therapy has emerged as a promising regenerative approach for patients with refractory or non-revascularizable CAD. MSCs exhibit unique immunomodulatory, [...] Read more.
Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality despite advances in medical and interventional therapies. Mesenchymal stem cell (MSC) therapy has emerged as a promising regenerative approach for patients with refractory or non-revascularizable CAD. MSCs exhibit unique immunomodulatory, pro-angiogenic, and anti-fibrotic properties, primarily through paracrine mechanisms involving the secretion of cytokines, growth factors, and exosomal microRNAs. Clinical and preclinical studies have demonstrated improvements in myocardial perfusion, left ventricular ejection fraction (LVEF), and functional capacity following MSC-based interventions, particularly in patients with low baseline LVEF and heightened inflammation. Various MSC sources—including bone marrow, adipose tissue, and umbilical cord—offer distinct advantages, while delivery strategies such as intracoronary, intramyocardial, intravenous, and subcutaneous administration impact cell retention and efficacy. Advances in genetic modification, hypoxic preconditioning, and exosome-based therapies aim to enhance MSC survival and therapeutic potency. However, challenges persist regarding cell engraftment, cryopreservation effects, and inter-patient variability. Moving toward precision cell therapy, future approaches may involve stratifying patients by inflammatory status, ischemic burden, and comorbidities to optimize treatment outcomes. MSCs may not yet replace conventional therapies but are increasingly positioned to complement them within a personalized, regenerative framework for CAD management. Full article
Show Figures

Figure 1

26 pages, 1402 KB  
Review
Exosome Therapy in Stress Urinary Incontinence: A Comprehensive Literature Review
by Manouchehr Nasrollahzadeh Saravi, Mahdi Mohseni, Iman Menbari Oskouie, Jafar Razavi, Ernesto Delgado Cidranes and Masoumeh Majidi Zolbin
Biomedicines 2025, 13(5), 1229; https://doi.org/10.3390/biomedicines13051229 - 19 May 2025
Cited by 1 | Viewed by 1818
Abstract
Stress urinary incontinence (SUI) is characterized by the involuntary leakage of urine when bladder pressure exceeds urethral closing pressure during routine activities such as physical exertion, coughing, exercise, or sneezing. SUI is the most prevalent form of urinary incontinence, with a reported prevalence [...] Read more.
Stress urinary incontinence (SUI) is characterized by the involuntary leakage of urine when bladder pressure exceeds urethral closing pressure during routine activities such as physical exertion, coughing, exercise, or sneezing. SUI is the most prevalent form of urinary incontinence, with a reported prevalence ranging from 10% to 70%, and its incidence increases with age. As the global population continues to age, the prevalence and clinical significance of SUI are expected to rise accordingly. The pathophysiology of SUI is primarily driven by two mechanisms: urethral hypermobility, resulting from compromised supporting structures, and intrinsic urethral sphincter deficiency, characterized by the deterioration of urethral mucosa and muscle tone. Current treatment options for SUI include conservative management strategies, which heavily rely on patient adherence and are associated with high recurrence rates, and surgical interventions, such as sling procedures, which offer effective solutions but are costly and carry the risk of adverse side effects. These limitations highlight the urgent need for more effective and comprehensive treatment modalities. Exosomes, nano-sized (30–150 nm) extracellular vesicles secreted by nearly all cell types, have emerged as a novel therapeutic option due to their regenerative, anti-fibrotic, pro-angiogenic, anti-apoptotic, anti-inflammatory, and anti-hypoxic properties. These biological functions position exosomes as a promising alternative to conventional therapies for SUI. Exosome therapy has the potential to enhance tissue regeneration, restore urethral function, and repair nerve and muscle damage, thereby reducing symptom burden and improving patients’ quality of life. Additionally, exosome-based treatments could offer a less invasive alternative to surgery, potentially decreasing the need for repeated interventions and minimizing complications associated with current procedures. In this literature review, we critically assess the current state of research on the potential use of exosomes in treating SUI, highlighting their therapeutic mechanisms and potential clinical benefits. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

29 pages, 1945 KB  
Review
Immune Cell Interplay in the Fight Against GBM
by Nico Vallieri and Angeliki Datsi
Cancers 2025, 17(5), 817; https://doi.org/10.3390/cancers17050817 - 26 Feb 2025
Cited by 1 | Viewed by 1854
Abstract
Despite multimodal therapies, the treatment of glioblastoma remains challenging. In addition to the very complex mechanisms of cancer cells, including specialized phenotypes that enable them to proliferate, invade tissues, and evade immunosurveillance, they exhibit a pronounced resistance to chemo- and radiotherapy. More advanced [...] Read more.
Despite multimodal therapies, the treatment of glioblastoma remains challenging. In addition to the very complex mechanisms of cancer cells, including specialized phenotypes that enable them to proliferate, invade tissues, and evade immunosurveillance, they exhibit a pronounced resistance to chemo- and radiotherapy. More advanced tumors create a hypoxic environment that supports their proliferation and survival, while robust angiogenesis ensures a constant supply of nutrients. In GBM, these structures are very pronounced and contribute to the creation and maintenance of a highly immunosuppressive microenvironment that promotes tumor growth and immune escape. In addition, the high accumulation of immunosuppressive tumor-infiltrating leukocytes and other cells, the pronounced expression of immune checkpoint molecules, and the low mutational burden, i.e., the low number of neoantigens, are hallmarks of GBM and contribute to the challenge of therapeutic approaches. Here, we review a number of mechanisms that GBM exploits to support tumor growth and potential treatments. These include new chemotherapeutics, tumor treating fields, and small molecules, including compounds targeting angiogenesis or blockers of tyrosine kinases that inhibit tumor cell proliferation and survival. In addition, we focus on immunotherapies such as immune checkpoint blockade or cell therapies, in particular vaccination with dendritic cells and CAR-T cells, which can either kill GBM cells directly or bypass immunosuppression by modulating the tumor microenvironment or boosting the patient’s own immune response. Full article
(This article belongs to the Special Issue The Tumor Microenvironment: Interplay Between Immune Cells)
Show Figures

Figure 1

10 pages, 745 KB  
Article
Effects of Resuscitation and Simulation Team Training on the Outcome of Neonates with Hypoxic-Ischemic Encephalopathy in South Tyrol
by Alex Staffler, Marion Bellutti, Arian Zaboli, Julia Bacher and Elisabetta Chiodin
J. Clin. Med. 2025, 14(3), 854; https://doi.org/10.3390/jcm14030854 - 28 Jan 2025
Viewed by 1208
Abstract
Background/Objectives: Neonatal hypoxic-ischemic encephalopathy (HIE) due to perinatal complications remains an important pathology with a significant burden for neonates, families, and the healthcare system. Resuscitation and simulation team training are key elements in increasing patient safety. In this retrospective cohort study, we [...] Read more.
Background/Objectives: Neonatal hypoxic-ischemic encephalopathy (HIE) due to perinatal complications remains an important pathology with a significant burden for neonates, families, and the healthcare system. Resuscitation and simulation team training are key elements in increasing patient safety. In this retrospective cohort study, we evaluated whether regular constant training of all personnel working in delivery rooms in South Tyrol improved the outcome of neonates with HIE. Methods: We retrospectively analyzed three groups of neonates with moderate to severe HIE who required therapeutic hypothermia. The first group included infants born before the systematic introduction of training and was compared to the second group, which included infants born after three years of regular training. A third group, which included infants born after the SARS-CoV-2 pandemic, was compared with the previous two to evaluate retention of skills and the long-term effect of our training program. Results: Over the three study periods, mortality decreased from 41.2% to 0% and 14.3%, respectively. There was also a significant reduction of patients with subclincal seizures detected only through EEG, from 47.1% in the first period to 43.7% and 14.3% in the second and third study periods, respectively. Clinical manifestations of seizures decreased significantly from 47.1% to 37.5% and 10.7%, respectively, as well as severe brain lesions in ultrasound (US) and MRI. Conclusions: In this study, constant and regular simulation training for all birth attendants significantly decreases mortality and improves the outcome in neonates with moderate to severe HIE. This positive effect seems to last even after a one-year period during which training sessions could not be performed due to the COVID-19 pandemic. Full article
(This article belongs to the Special Issue Neonatal Neurology: New Insights, Diagnosis and Treatment)
Show Figures

Figure 1

14 pages, 1606 KB  
Article
Influence of Obstructive Sleep Apnea on Oxidative Stress in Pregnancy
by Laura Cànaves-Gómez, María Paloma Giménez Carrero, Ainhoa Álvarez Ruiz De Larrinaga, Andrés Sánchez Baron, Mercedes Codina Marcet, Amanda Iglesias Coma, Mónica De-La-Peña, María Concepción Piñas Cebrian, Susana García Fernández, José Antonio Peña Zarza, Daniel Morell-Garcia, Antonia Barceló Bennasar and Alberto Alonso-Fernández
Int. J. Mol. Sci. 2025, 26(3), 886; https://doi.org/10.3390/ijms26030886 - 21 Jan 2025
Viewed by 1796
Abstract
Obstructive sleep apnea (OSA) is common during pregnancy and linked to adverse outcomes. While oxidative stress is a proposed pathogenic mechanism, evidence in pregnant populations remains limited. This multicenter, prospective study evaluated oxidative stress through protein carbonyl levels in 171 pregnant women and [...] Read more.
Obstructive sleep apnea (OSA) is common during pregnancy and linked to adverse outcomes. While oxidative stress is a proposed pathogenic mechanism, evidence in pregnant populations remains limited. This multicenter, prospective study evaluated oxidative stress through protein carbonyl levels in 171 pregnant women and 86 cord blood samples. Polysomnography (PSG) performed during pregnancy categorized participants with the apnea–hypopnea index (AHI) in OSA, rapid eye movement (REM) OSA, and supine OSA. Protein carbonyl levels were measured by the dinitrophenyl hydrazine (DNPH) method. No significant differences were found in maternal or cord blood protein carbonyl levels between OSA and non-OSA groups, or between REM and supine OSA subgroups. Interestingly, women with shorter apnea–hypopnea (AH) length showed both higher maternal and cord blood protein carbonyl levels and lower nocturnal oxygen saturation. Overall, OSA in pregnancy was not associated with increased oxidative stress as measured by protein carbonyl levels. However, apnea–hypopnea duration and nocturnal hypoxia may influence oxidative stress, pointing to a complex relationship between OSA and oxidative stress during pregnancy, beyond traditional metrics like AHI. Future studies should explore additional biomarkers and diverse molecular pathways that could play a role, with special attention to emerging factors such as apnea–hypopnea length and hypoxic burden to elucidate the interrelationships between OSA and pregnancy more comprehensively. Full article
(This article belongs to the Special Issue Molecular Research on Oxidative Stress in Health and Disease)
Show Figures

Figure 1

18 pages, 1047 KB  
Review
Expression and Regulation of Hypoxia-Inducible Factor Signalling in Acute Lung Inflammation
by Nikolaos S. Lotsios, Chrysi Keskinidou, Sotirios P. Karagiannis, Kostas A. Papavassiliou, Athanasios G. Papavassiliou, Anastasia Kotanidou, Ioanna Dimopoulou, Stylianos E. Orfanos and Alice G. Vassiliou
Cells 2025, 14(1), 29; https://doi.org/10.3390/cells14010029 - 30 Dec 2024
Cited by 2 | Viewed by 2220
Abstract
Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the [...] Read more.
Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the development of innovative treatment strategies. Among critical illnesses, impaired lung function is frequently linked to hypoxic conditions. This review focuses on the expression and regulation of HIF signalling in experimental models of acute lung injury (ALI) and clinical studies in critically ill patients with acute respiratory distress syndrome (ARDS). We explore the potential dual role of HIF signalling in acute lung inflammation. Furthermore, its role in key biological processes and its potential prognostic significance in clinical scenarios are discussed. Finally, we explore recent pharmacological advancements targeting HIF signalling, which have emerged as promising alternatives to existing therapeutic approaches, potentially enabling more effective management strategies. Full article
(This article belongs to the Special Issue The Role of Hypoxia-Inducible Factors (HIFs) in Human Diseases)
Show Figures

Figure 1

41 pages, 3561 KB  
Review
Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives
by Ari Hashimoto and Shigeru Hashimoto
Cancers 2024, 16(23), 4094; https://doi.org/10.3390/cancers16234094 - 6 Dec 2024
Cited by 4 | Viewed by 2850
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues [...] Read more.
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed. Full article
(This article belongs to the Special Issue Inflammation and Metabolism of Cancers)
Show Figures

Figure 1

17 pages, 18783 KB  
Article
ZLN005, a PGC-1α Activator, Protects the Liver against Ischemia–Reperfusion Injury and the Progression of Hepatic Metastases
by Celine Tohme, Tony Haykal, Ruiqi Yang, Taylor J. Austin, Patricia Loughran, David A. Geller, Richard L. Simmons, Samer Tohme and Hamza O. Yazdani
Cells 2024, 13(17), 1448; https://doi.org/10.3390/cells13171448 - 29 Aug 2024
Cited by 3 | Viewed by 2944
Abstract
Background: Exercise can promote sustainable protection against cold and warm liver ischemia–reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can [...] Read more.
Background: Exercise can promote sustainable protection against cold and warm liver ischemia–reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. Methods: Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. Results: ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. Conclusions: Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases. Full article
Show Figures

Figure 1

12 pages, 987 KB  
Article
Acetazolamide as an Add-on Therapy Following Barbed Reposition Pharyngoplasty in Obstructive Sleep Apnea: A Randomized Controlled Trial
by Simon Hellemans, Eli Van de Perck, Dorine Van Loo, Johan Verbraecken, Scott A. Sands, Ali Azarbarzin, Marijke Dieltjens, Sara Op De Beeck, Anneclaire Vroegop and Olivier M. Vanderveken
Life 2024, 14(8), 963; https://doi.org/10.3390/life14080963 - 31 Jul 2024
Cited by 4 | Viewed by 2394
Abstract
Surgical interventions, like barbed reposition pharyngoplasty (BRP), are a valuable alternative for patients with obstructive sleep apnea (OSA) who are unable to tolerate continuous positive airway pressure (CPAP). However, predicting surgical success remains challenging, partly due to the contribution of non-anatomical factors. Therefore, [...] Read more.
Surgical interventions, like barbed reposition pharyngoplasty (BRP), are a valuable alternative for patients with obstructive sleep apnea (OSA) who are unable to tolerate continuous positive airway pressure (CPAP). However, predicting surgical success remains challenging, partly due to the contribution of non-anatomical factors. Therefore, combined medical treatment with acetazolamide, known to stabilize respiratory drive, may lead to superior surgical results. This double-blind, parallel-group randomized controlled trial evaluates the efficacy of acetazolamide as an add-on therapy to BRP in OSA. A total of 26 patients with moderate to severe OSA undergoing BRP were randomized to receive either acetazolamide or placebo post-surgery for 16 weeks. The group who was treated with BRP in combination with acetazolamide showed a reduction in AHI of 69.4%, significantly surpassing the 32.7% reduction of the BRP + placebo group (p < 0.01). The sleep apnea-specific hypoxic burden also decreased significantly in the group who was treated with BRP + acetazolamide (p < 0.01), but not in the group receiving BRP + placebo (p = 0.28). Based on these results, acetazolamide as an add-on therapy following BRP surgery shows promise in improving outcomes for OSA patients, addressing both anatomical and non-anatomical factors. Full article
(This article belongs to the Special Issue Obstructive Sleep Apnea (OSA)—2nd Edition)
Show Figures

Figure 1

9 pages, 1410 KB  
Article
Use of CPAP Ventilation in Non-ICU Wards May Influence Outcomes in Patients with Severe Respiratory COVID-19
by Josip Brusić, Aron Grubešić, Filip Jarić, Tin Vučković, Andrica Lekić, Alan Šustić and Alen Protić
Medicina 2024, 60(4), 582; https://doi.org/10.3390/medicina60040582 - 31 Mar 2024
Viewed by 1762
Abstract
Background and Objectives: The COVID-19 disease has significantly burdened the healthcare system, including all units of severe patient treatment. Non-intensive care units were established to rationalize the capacity within the Intensive Care Unit (ICU) and to create a unit where patients with [...] Read more.
Background and Objectives: The COVID-19 disease has significantly burdened the healthcare system, including all units of severe patient treatment. Non-intensive care units were established to rationalize the capacity within the Intensive Care Unit (ICU) and to create a unit where patients with Acute Respiratory Distress Syndrome (ARDS) could be treated with non-invasive Continuous Positive Air Pressure (CPAP) outside the ICU. This unicentric retrospective study aimed to assess the efficacy of NIV Treatment in Patients of the fourth pandemic wave and how its application affects the frequency and mortality of ICU-treated patients at University Hospital Rijeka compared to earlier waves of the COVID-19 pandemic. Furthermore, the study showcases the effect of the Patient/Nurse ratio (P/N ratio) on overall mortality in the ICU. Materials and Methods: The study was conducted on two groups of patients with respiratory insufficiency in the second and third pandemic waves, treated in the COVID Respiratory Centre (CRC) (153 patients). We also reviewed a cohort of patients from the fourth pandemic wave who were initially hospitalized in a COVID-6 non-intensive unit from 1 October 2021 to 1 November 2022 (102 patients), and some of them escalated to CRC. Results: The introduction of the CPAP non-invasive ventilation method as a means of hypoxic respiratory failure treatment in non-intensive care units has decreased the strain, overall number of admissions, and CRC patient mortality. The overall fourth wave mortality was 29.4%, compared to the 58.2% overall mortality of the second and third waves. Conclusions: As a result, this has decreased CRC patient admissions and, by itself, overall mortality. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

36 pages, 6533 KB  
Article
Hypothermic Protection in Neocortex Is Topographic and Laminar, Seizure Unmitigating, and Partially Rescues Neurons Depleted of RNA Splicing Protein Rbfox3/NeuN in Neonatal Hypoxic-Ischemic Male Piglets
by Christopher T. Primiani, Jennifer K. Lee, Caitlin E. O’Brien, May W. Chen, Jamie Perin, Ewa Kulikowicz, Polan Santos, Shawn Adams, Bailey Lester, Natalia Rivera-Diaz, Valerie Olberding, Mark V. Niedzwiecki, Eva K. Ritzl, Christa W. Habela, Xiuyun Liu, Zeng-Jin Yang, Raymond C. Koehler and Lee J. Martin
Cells 2023, 12(20), 2454; https://doi.org/10.3390/cells12202454 - 15 Oct 2023
Cited by 8 | Viewed by 4081
Abstract
The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia [...] Read more.
The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2–7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor. Full article
Show Figures

Figure 1

14 pages, 1140 KB  
Review
Sex Differences in Neurovascular Control: Implications for Obstructive Sleep Apnea
by Joshua M. Bock, Ian M. Greenlund, Virend K. Somers and Sarah E. Baker
Int. J. Mol. Sci. 2023, 24(17), 13094; https://doi.org/10.3390/ijms241713094 - 23 Aug 2023
Cited by 6 | Viewed by 2458
Abstract
Patients with obstructive sleep apnea (OSA) have a heightened risk of developing cardiovascular diseases, namely hypertension. While seminal evidence indicates a causal role for sympathetic nerve activity in the hypertensive phenotype commonly observed in patients with OSA, no studies have investigated potential sex [...] Read more.
Patients with obstructive sleep apnea (OSA) have a heightened risk of developing cardiovascular diseases, namely hypertension. While seminal evidence indicates a causal role for sympathetic nerve activity in the hypertensive phenotype commonly observed in patients with OSA, no studies have investigated potential sex differences in the sympathetic regulation of blood pressure in this population. Supporting this exploration are large-scale observational data, as well as controlled interventional studies in healthy adults, indicating that sleep disruption increases blood pressure to a greater extent in females relative to males. Furthermore, females with severe OSA demonstrate a more pronounced hypoxic burden (i.e., disease severity) during rapid eye movement sleep when sympathetic nerve activity is greatest. These findings would suggest that females are at greater risk for the hemodynamic consequences of OSA and related sleep disruption. Accordingly, the purpose of this review is three-fold: (1) to review the literature linking sympathetic nerve activity to hypertension in OSA, (2) to highlight recent experimental data supporting the hypothesis of sex differences in the regulation of sympathetic nerve activity in OSA, and (3) to discuss the potential sex differences in peripheral adrenergic signaling that may contribute to, or offset, cardiovascular risk in patients with OSA. Full article
(This article belongs to the Special Issue Sympathetic Nerves and Cardiovascular Diseases 2.0)
Show Figures

Figure 1

12 pages, 703 KB  
Review
Mechanisms of Atrial Fibrillation in Obstructive Sleep Apnoea
by James Saleeb-Mousa, Demitris Nathanael, Andrew M. Coney, Manish Kalla, Keith L. Brain and Andrew P. Holmes
Cells 2023, 12(12), 1661; https://doi.org/10.3390/cells12121661 - 19 Jun 2023
Cited by 25 | Viewed by 5582
Abstract
Obstructive sleep apnoea (OSA) is a strong independent risk factor for atrial fibrillation (AF). Emerging clinical data cite adverse effects of OSA on AF induction, maintenance, disease severity, and responsiveness to treatment. Prevention using continuous positive airway pressure (CPAP) is effective in some [...] Read more.
Obstructive sleep apnoea (OSA) is a strong independent risk factor for atrial fibrillation (AF). Emerging clinical data cite adverse effects of OSA on AF induction, maintenance, disease severity, and responsiveness to treatment. Prevention using continuous positive airway pressure (CPAP) is effective in some groups but is limited by its poor compliance. Thus, an improved understanding of the underlying arrhythmogenic mechanisms will facilitate the development of novel therapies and/or better selection of those currently available to complement CPAP in alleviating the burden of AF in OSA. Arrhythmogenesis in OSA is a multifactorial process characterised by a combination of acute atrial stimulation on a background of chronic electrical, structural, and autonomic remodelling. Chronic intermittent hypoxia (CIH), a key feature of OSA, is associated with long-term adaptive changes in myocyte ion channel currents, sensitising the atria to episodic bursts of autonomic reflex activity. CIH is also a potent driver of inflammatory and hypoxic stress, leading to fibrosis, connexin downregulation, and conduction slowing. Atrial stretch is brought about by negative thoracic pressure (NTP) swings during apnoea, promoting further chronic structural remodelling, as well as acutely dysregulating calcium handling and electrical function. Here, we provide an up-to-date review of these topical mechanistic insights and their roles in arrhythmia. Full article
(This article belongs to the Special Issue Cellular Mechanisms Associated with Intermittent Hypoxia)
Show Figures

Figure 1

16 pages, 1815 KB  
Review
Diagnosis and Treatment of Sleep Apnea in Children: A Future Perspective Is Needed
by Esther Solano-Pérez, Carlota Coso, María Castillo-García, Sofía Romero-Peralta, Sonia Lopez-Monzoni, Eduardo Laviña, Irene Cano-Pumarega, Manuel Sánchez-de-la-Torre, Francisco García-Río and Olga Mediano
Biomedicines 2023, 11(6), 1708; https://doi.org/10.3390/biomedicines11061708 - 14 Jun 2023
Cited by 28 | Viewed by 9954
Abstract
Obstructive sleep apnea (OSA) in children is a prevalent, but still, today, underdiagnosed illness, which consists of repetitive episodes of upper airway obstruction during sleep with important repercussions for sleep quality. OSA has relevant consequences in the pediatric population, mainly in the metabolic, [...] Read more.
Obstructive sleep apnea (OSA) in children is a prevalent, but still, today, underdiagnosed illness, which consists of repetitive episodes of upper airway obstruction during sleep with important repercussions for sleep quality. OSA has relevant consequences in the pediatric population, mainly in the metabolic, cardiovascular (CV), and neurological spheres. However, contrary to adults, advances in diagnostic and therapeutic management have been scarce in the last few years despite the increasing scientific evidence of the deleterious consequences of pediatric OSA. The problem of underdiagnosis and the lack of response to treatment in some groups make an update to the management of OSA in children necessary. Probably, the heterogeneity of OSA is not well represented by the classical clinical presentation and severity parameters (apnea/hypopnea index (AHI)), and new strategies are required. A specific and consensus definition should be established. Additionally, the role of simplified methods in the diagnosis algorithm should be considered. Finally, the search for new biomarkers for risk stratification is needed in this population. In conclusion, new paradigms based on personalized medicine should be implemented in this population. Full article
Show Figures

Graphical abstract

Back to TopTop