Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = hypertonic salt solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2505 KiB  
Article
Evaluation of Sterility of Saline Formulations Manufactured for Wound Care in Veterinary Practice
by Madyson Marcolina, Zoë J. Williams, Dean Hendrickson and Lynn M. Pezzanite
Vet. Sci. 2025, 12(5), 431; https://doi.org/10.3390/vetsci12050431 - 30 Apr 2025
Viewed by 627
Abstract
The discontinuation of commercially available saline and hypertonic saline wound dressings for the veterinary market has restricted options available to veterinary practitioners treating contaminated and infected wounds. Clinicians may manufacture their own homemade solutions in clinics or field settings to treat equine or [...] Read more.
The discontinuation of commercially available saline and hypertonic saline wound dressings for the veterinary market has restricted options available to veterinary practitioners treating contaminated and infected wounds. Clinicians may manufacture their own homemade solutions in clinics or field settings to treat equine or livestock species; however, information is limited on whether autoclave sterilization is necessary or sufficient to eliminate bacterial growth in isotonic and concentrated salt solutions and how long they may subsequently be stored prior to use. The purpose of this study was to assess sterility of saline (0.9%) and hypertonic saline (20%) solutions manufactured three ways (1—autoclaved glass bottle that was autoclaved again following solution preparation; 2—autoclaved glass bottle, not autoclaved again following preparation; 3—non-autoclaved plastic bottle, not autoclaved following preparation). Solutions were stored two different ways (1—solution in sealed bottle or 2—soaked gauze in vacuum-sealed plastic packets). Products were assessed for bacterial growth at four time points (baseline, one week, one month, six months). At each time point, samples of each solution were plated on Luria–Bertani (LB) agar plates and assessed for bacterial growth at 24 h. Vacuum-sealed soaked gauze was placed in antibiotic-free growth media for 24 h, and then media were plated on LB agar plates and assessed for bacterial growth at 24 h. If bacterial growth was detected, qualitative culture with sensitivity was performed to identify bacterial isolates. No bacterial growth was detected in stored solutions for any preparation method, concentration or time point assessed. Bacterial growth was detected from 0.9% saline-soaked gauze at 1 week, 1 month and 6 months in all container types for at least one time point. Bacterial culture revealed Ralstonia, Bacillus, Sphingomonas and Staphylococcus species. Environmental controls (water, containers, salt, biosafety cabinet and benchtop) were submitted for culture to identify the source of contamination, yielding light mixed growth from tap water and no growth from any other locations. These findings provide clinicians with practical information to guide preparation and storage of homemade saline-based products for wound care. Full article
Show Figures

Figure 1

19 pages, 2518 KiB  
Article
Kinetics of Quality Degradation and Water Removal During Air Drying of Osmodehydrated Oyster Mushrooms Impregnated with Rosa damascena Distillation By-Products
by Natalia A. Stavropoulou, Andriana E. Lazou and Maria C. Giannakourou
Foods 2025, 14(9), 1543; https://doi.org/10.3390/foods14091543 - 28 Apr 2025
Viewed by 574
Abstract
Mushrooms are a valuable food in the human diet due to their superior nutritional properties. However, mushrooms’ short shelf life presents a challenge for their commercial application. Mushrooms’ air drying kinetics were determined, and the impact of prior osmotic dehydration was quantitatively evaluated. [...] Read more.
Mushrooms are a valuable food in the human diet due to their superior nutritional properties. However, mushrooms’ short shelf life presents a challenge for their commercial application. Mushrooms’ air drying kinetics were determined, and the impact of prior osmotic dehydration was quantitatively evaluated. Additionally, the sustainable utilization of Rosa damascena distillation wastewater, rich in phenolics, was explored. Samples were impregnated with hypertonic solutions including rose wastewater, glycerol, salt and calcium chloride, and air-dehydrated at 40, 55, and 70 °C. Texture and color changes were determined during drying. Seven acknowledged mathematical models were successfully applied to describe the drying kinetics, with the effect of process temperature being incorporated into the drying constant. The simplest first-order model is deemed adequate for describing moisture reduction and quality degradation. Pretreatment significantly reduced the drying time to reach a final moisture content of 10% w.b, especially at 70 °C, where the reduction obtained was more than 40% (5 h for untreated vs. 2.5 h for pretreated samples). At the end of drying, pretreated samples reached lower values of water activity and maintained their color better (25–50% improvement). This study aims to provide a basis for producing a novel, mushroom-based, nutritionally fortified dry snack, following results confirmed by a sensory examination. Full article
Show Figures

Figure 1

9 pages, 462 KiB  
Review
Etiology, Clinical Approach, and Therapeutic Consequences of Hyponatremia
by Goce Spasovski
Kidney Dial. 2024, 4(1), 37-45; https://doi.org/10.3390/kidneydial4010004 - 17 Feb 2024
Viewed by 7359
Abstract
A perturbation in the water balance rather than any change in salt content is the main cause of hyponatremia, the most frequent electrolyte abnormality, defined as a serum sodium concentration <135 mEq/L. Hyponatremia may be divided between mild (Na > 120 mEq/L) or [...] Read more.
A perturbation in the water balance rather than any change in salt content is the main cause of hyponatremia, the most frequent electrolyte abnormality, defined as a serum sodium concentration <135 mEq/L. Hyponatremia may be divided between mild (Na > 120 mEq/L) or severe (Na < 120 mEq/L) hyponatremia, and is most frequently observed in elderly ICU hospitalized patients. Based on tonicity, hyponatremia may be hypotonic (a decreased concentration of the solute), isotonic, and hypertonic (falsely low sodium). According to the volume of extracellular fluid (ECF), hyponatremia is further divided among hypovolemic, euvolemic, or hypervolemic hyponatremia. Finally, hyponatremia may develop rapidly as acute (<48 h), usually with severe symptoms, or slowly as chronic hyponatremia, usually being asymptomatic or with mild symptoms. Acute severe hyponatremia presents with severe CNS problems, increased hospitalization rates, and mortality. The treatment with 3% sodium chloride and a 100 mL IV bolus based on severity and persistence of symptoms needs careful monitoring. A non-severe hyponatremia may be treated with oral urea. In asymptomatic mild hyponatremia, an adequate solute intake with an initial fluid restriction of 500 mL/d adjusted according to the serum sodium levels is preferred. Vaptans could be considered in patients with high ADH activity regardless of whether they are euvolemic or hypervolemic. In general, the treatment of hyponatremia should be based on the underlying cause, the duration and degree of hyponatremia, the observed symptoms, and volume status of patient. Full article
Show Figures

Figure 1

13 pages, 11837 KiB  
Article
Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats
by Sungmin Jang, Jee Young Kim, Cheong-Wun Kim and Inkyeom Kim
J. Cardiovasc. Dev. Dis. 2023, 10(10), 414; https://doi.org/10.3390/jcdd10100414 - 2 Oct 2023
Cited by 2 | Viewed by 2211
Abstract
This study aimed to delineate the effect of sodium chloride on the induction of inflammatory responses and the development of hypertension in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. Splenocytes were isolated from the spleens of SS and SR rats, and cultured on [...] Read more.
This study aimed to delineate the effect of sodium chloride on the induction of inflammatory responses and the development of hypertension in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. Splenocytes were isolated from the spleens of SS and SR rats, and cultured on anti-CD3-coated plates for 5 days. The cultured splenic T-cells were challenged with a hypertonic salt solution (0, 20, or 40 mM) in the absence or presence of IL-6 (0, 20, or 60 ng/mL), TGF-β (0, 5, or 15 ng/mL), or IL-23 (0, 10, or 30 ng/mL), and analyzed via ELISA, flow cytometry, and immunofluorescence. The hypertonic salt solution potentiated IL-17A production, as well as the differentiation of Th17 cells via IL-6/TGF-β/IL-23, exclusively in SS rats. However, it did not affect IL-10 production or the differentiation of Treg cells in any of the groups. Furthermore, it potentiated the signal of RORγt in IL-6-treated splenic T-cells from SS rats. To summarize, cultured splenic T-cells exhibited enhanced inflammatory responses on exposure to a hypertonic salt solution in SS rats only, which indicated that sodium chloride and inflammatory cytokines synergistically drove the induction of pathogenic Th17 cells and the development of hypertension in this group only. Full article
(This article belongs to the Section Acquired Cardiovascular Disease)
Show Figures

Graphical abstract

8 pages, 1013 KiB  
Brief Report
Thinking beyond Vaccination: Promising Add-On Strategies to Active Immunization and Vaccination in Pandemics—A Mini-Review
by Franz Tatzber, Willibald Wonisch, Ulrike Resch, Wolfgang Strohmaier, Meinrad Lindschinger, Sabrina Mörkl and Gerhard Cvirn
Viruses 2023, 15(6), 1372; https://doi.org/10.3390/v15061372 - 14 Jun 2023
Cited by 1 | Viewed by 2044
Abstract
There is little doubt that final victories over pandemics, such as COVID-19, are attributed to herd immunity, either through post-disease convalescence or active immunization of a high percentage of the world’s population with vaccines, which demonstrate protection from infection and transmission and are [...] Read more.
There is little doubt that final victories over pandemics, such as COVID-19, are attributed to herd immunity, either through post-disease convalescence or active immunization of a high percentage of the world’s population with vaccines, which demonstrate protection from infection and transmission and are available in large quantities at reasonable prices. However, it is assumable that humans with immune defects or immune suppression, e.g., as a consequence of allograft transplantation, cannot be immunized actively nor produce sufficient immune responses to prevent SARS-CoV-2 infections. These subjects desperately need other strategies, such as sophisticated protection measures and passive immunization. Hypertonic salt solutions attack vulnerable core areas of viruses; i.e., salt denatures surface proteins and thus prohibits virus penetration of somatic cells. It has to be ensured that somatic proteins are not affected by denaturation regarding this unspecific virus protection. Impregnating filtering facepieces with hypertonic salt solutions is a straightforward way to inactivate viruses and other potential pathogens. As a result of the contact of salt crystals on the filtering facepiece, these pathogens become denatured and inactivated almost quantitatively. Such a strategy could be easily applied to fight against the COVID-19 pandemic and other ones that may occur in the future. Another possible tool to fight the COVID-19 pandemic is passive immunization with antibodies against SARS-CoV-2, preferably from human origin. Such antibodies can be harvested from human patients’ sera who have successfully survived their SARS-CoV-2 infection. The disadvantage of a rapid decrease in the immunoglobulin titer after the infection ends can be overcome by immortalizing antibody-producing B cells via fusion with, e.g., mouse myeloma cells. The resulting monoclonal antibodies are then of human origin and available in, at least theoretically, unlimited amounts. Finally, dry blood spots are a valuable tool for surveilling a population’s immunity. The add-on strategies were selected as examples for immediate, medium and long-term assistance and therefore did not raise any claim to completeness. Full article
Show Figures

Figure 1

25 pages, 4725 KiB  
Article
Chemonastic Stalked Glands in the Carnivorous Rainbow Plant Byblis gigantea LINDL. (Byblidaceae, Lamiales)
by Simon Poppinga, Noah Knorr, Sebastian Ruppert and Thomas Speck
Int. J. Mol. Sci. 2022, 23(19), 11514; https://doi.org/10.3390/ijms231911514 - 29 Sep 2022
Cited by 7 | Viewed by 3491
Abstract
Carnivorous rainbow plants (Byblis, Byblidaceae, Lamiales) possess sticky flypaper traps for the capture, retention, and digestion of prey (mainly small insects). The trapping system is based on a multitude of millimeter-sized glandular trichomes (also termed stalked glands), which produce adhesive glue [...] Read more.
Carnivorous rainbow plants (Byblis, Byblidaceae, Lamiales) possess sticky flypaper traps for the capture, retention, and digestion of prey (mainly small insects). The trapping system is based on a multitude of millimeter-sized glandular trichomes (also termed stalked glands), which produce adhesive glue drops. For over a century, the trapping system of Byblis was considered passive, meaning that no plant movement is involved. Recently, a remarkable discovery was made: the stalked glands of Byblis are indeed capable of reacting to chemical (protein) stimuli with slow movement responses. This prompted us to investigate this phenomenon further with a series of experiments on the stimulation, kinematics, actuation, and functional morphology of the stalked glands of cultivated Byblis gigantea plants. Measured stalked gland lengths and densities on the trap leaves are similar to the data from the literature. Motion reactions could only be triggered with chemical stimuli, corroborating the prior study on the stalked gland sensitivity. Reaction time (i.e., time from stimulation until the onset of motion) and movement duration are temperature-dependent, which hints towards a tight physiological control of the involved processes. The stalked gland movement, which consist of a sequence of twisting and kinking motions, is rendered possible by the components of the stalk cell wall and is furthermore anatomically and mechanically predetermined by the orientation of cellulose microfibrils in the cell wall. Successive water displacement processes from the stalk cell into the basal cells actuate the movement. The same kinematics could be observed in stalked glands drying in air or submersed in a saturated salt solution. Stimulated and dried stalked glands as well as those from the hypertonic medium were capable of regaining their initial shape by rehydration in water. However, no glue production could be observed afterwards. The long-time overlooked chemonastic movements of stalked glands may help Byblis to retain and digest its prey; however, further research is needed to shed light on the ecological characteristics of the rainbow plant’s trapping system. Full article
(This article belongs to the Special Issue Carnivorous Plant Biology: From Gene to Traps)
Show Figures

Figure 1

9 pages, 1234 KiB  
Brief Report
Coating with Hypertonic Saline Improves Virus Protection of Filtering Facepiece Manyfold—Benefit of Salt Impregnation in Times of Pandemic
by Franz Tatzber, Willibald Wonisch, Gyula Balka, Andras Marosi, Miklós Rusvai, Ulrike Resch, Meinrad Lindschinger, Sabrina Moerkl and Gerhard Cvirn
Int. J. Environ. Res. Public Health 2021, 18(14), 7406; https://doi.org/10.3390/ijerph18147406 - 11 Jul 2021
Cited by 7 | Viewed by 2699
Abstract
Recently, as is evident with the COVID-19 pandemic, virus-containing aerosols can rapidly spread worldwide. As a consequence, filtering facepieces (FFP) are essential tools to protect against airborne viral particles. Incorrect donning and doffing of masks and a lack of hand-hygiene cause contagion by [...] Read more.
Recently, as is evident with the COVID-19 pandemic, virus-containing aerosols can rapidly spread worldwide. As a consequence, filtering facepieces (FFP) are essential tools to protect against airborne viral particles. Incorrect donning and doffing of masks and a lack of hand-hygiene cause contagion by the wearers’ own hands. This study aimed to prove that hypertonic saline effectively reduces the infectious viral load on treated masks. Therefore, a hypertonic salt solution´s protective effect on surgical masks was investigated, specifically analyzing the infectivity of aerosolized Alphacoronavirus 1 in pigs (Transmissible Gastroenteritis Virus (TGEV)). Uncoated and hypertonic salt pre-coated FFPs were sprayed with TGEV. After drying, a defined part of the mask was rinsed with the medium, and the eluent was used for the infection of a porcine testicular cell line. Additionally, airborne microorganisms´ long-term infectivity of sodium-chloride in phosphate-buffered saline comprising 5% saccharose was investigated. In the results from an initial Median Tissue Culture Infectious Dose, infection rate of TGEV was minimally reduced by untreated FFP. In contrast, this could be reduced by a factor of 104 if FFPs were treated with hypertonic salt solutions. Airborne pathogens did not contaminate the growth medium if salt concentrations exceeded 5%. We conclude that hypertonic saline is a vital tool for anti-virus protection, exponentially improving the impact of FFPs. Full article
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Syringeable Self-Organizing Gels that Trigger Gold Nanoparticle Formation for Localized Thermal Ablation
by Sonia Cabana-Montenegro, Silvia Barbosa, Pablo Taboada, Angel Concheiro and Carmen Alvarez-Lorenzo
Pharmaceutics 2019, 11(2), 52; https://doi.org/10.3390/pharmaceutics11020052 - 26 Jan 2019
Cited by 5 | Viewed by 3552
Abstract
Block copolymer dispersions that form gels at body temperature and that additionally are able to reduce a gold salt to nanoparticles (AuNPs) directly in the final formulation under mild conditions were designed as hybrid depots for photothermal therapy. The in situ gelling systems [...] Read more.
Block copolymer dispersions that form gels at body temperature and that additionally are able to reduce a gold salt to nanoparticles (AuNPs) directly in the final formulation under mild conditions were designed as hybrid depots for photothermal therapy. The in situ gelling systems may retain AuNPs in the application zone for a long time so that localized elevations of temperature can be achieved each time the zone is irradiated. To carry out the work, dispersions were prepared covering a wide range of poloxamine Tetronic 1307:gold salt molar ratios in NaCl media (also varying from pure water to hypertonic solution). Even at copolymer concentrations well above the critical micelle concentration, the reducing power of the copolymer was maintained, and AuNPs were formed in few hours without extra additives. Varying the copolymer and NaCl concentrations allowed a fine tuning of nanoparticles’ shape from spherical to triangular nanoplates, which determined that the surface plasmon resonance showed a maximum intensity at 540 nm or at 1000 nm, respectively. The information gathered on the effects of (i) the poloxamine concentration on AuNPs’ size and shape under isotonic conditions, (ii) the AuNPs on the temperature-induced gelling transition, and (iii) the gel properties on the photothermal responsiveness of the AuNPs during successive irradiation cycles may help the rational design of one-pot gels with built-in temperature and light responsiveness. Full article
(This article belongs to the Special Issue Self-Organizing Nanovectors for Drug Delivery)
Show Figures

Graphical abstract

13 pages, 3771 KiB  
Article
High Concentrations of Sodium Chloride Improve Microbicidal Activity of Ibuprofen against Common Cystic Fibrosis Pathogens
by Adrián J. Muñoz, Roxana V. Alasino, Ariel G. Garro, Valeria Heredia, Néstor H. García, David C. Cremonezzi and Dante M. Beltramo
Pharmaceuticals 2018, 11(2), 47; https://doi.org/10.3390/ph11020047 - 17 May 2018
Cited by 14 | Viewed by 6452
Abstract
Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa, methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water [...] Read more.
Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa, methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water soluble Na-ibuprofen (IBU-Na) and ionic strength. Salt concentrations above 0.5 M modify the zeta potential promoting the action of Na-IBU; thus, with 1 M sodium chloride, IBU-Na is ten times more efficient than in the absence of ionic strength, and the minimum effective contact time is reduced from hours to minutes. In short time periods, where neither IBU-Na nor controls with 1 M NaCl show activity, the combination of both leads to a reduction in the bacterial load. We also analyzed whether the changes caused by salt on the bacterial membrane also promoted the activity of other microbicide compounds used in cystic fibrosis like gentamicin, tobramycin and phosphomycin. The results show that the presence of ionic strength only enhanced the bactericidal activity of the amphipathic molecule of IBU-Na. In this respect, the effect of saline concentration was also reflected in the surface properties of IBU-Na, where, in addition to the clear differences observed between 145 mM and 1 M, singular behaviors were also found, different in each condition. The combination of anti-inflammatory activity and this improved bactericidal effect of Na-IBU in hypertonic solution provides a new alternative for the treatment of respiratory infections of fibrotic patients based on known and widely used compounds. Full article
Show Figures

Graphical abstract

Back to TopTop