Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cell Culture
2.3. Measurement of Cytokines in Supernatants of Cultured Splenic T-Cells
2.4. Flow Cytometry Analysis of Cultured Splenic T-Cells
2.5. Immunofluorescence
2.6. Statistics
3. Results
3.1. IL-6 and IL-23 Increased the Production of IL-17A in Isotonic Salt Solution in the Supernatants of Cultured Splenic T-Cells from SS Rats, but Not SR Rats
3.2. IL-6 and IL-23 Increased the Production of IL-17A in Isotonic Salt Solution in the Supernatants of Cultured Splenic T-Cells from SS Rats, but Not SR Rats
3.3. Effect of Hypertonic Salt Solution on the Differentiation of Th17 Cells in Cultured Splenic T-Cells from SS Rats and SR Rats
3.4. Hypertonic Salt Solution Did Not Affect the Differentiation of Treg Cells in Cultured Splenic T-Cells from SS Rats and SR Rats
3.5. Immunofluorescence Analysis Indicated That the Hypertonic Salt Solution Resulted in an Increase in Th17 Cells in the Presence of IL-6 in Cultured Splenic T-Cells from Only the SS Rats and Not the SR Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R.A.; Muller, D.N.; Hafler, D.A. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013, 496, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Pitzer, A.; Elijovich, F.; Laffer, C.L.; Ertuglu, L.A.; Sahinoz, M.; Saleem, M.; Krishnan, J.; Dola, T.; Aden, L.A.; Sheng, Q. DC ENaC-dependent inflammasome activation contributes to salt-sensitive hypertension. Circ. Res. 2022, 131, 328–344. [Google Scholar] [CrossRef] [PubMed]
- Dahl, L.K.; Heine, M.; Tassinari, L. Effects of chronic excess salt ingestion: Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J. Exp. Med. 1962, 115, 1173. [Google Scholar] [CrossRef] [PubMed]
- Puleo, F.; Kim, K.; Frame, A.A.; Walsh, K.R.; Ferdaus, M.Z.; Moreira, J.D.; Comsti, E.; Faudoa, E.; Nist, K.M.; Abkin, E. Sympathetic Regulation of the NCC (Sodium Chloride Cotransporter) in Dahl Salt–Sensitive Hypertension. Hypertension 2020, 76, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.J.; Garvin, J.L. Angiotensin II Type 2 Receptor–Mediated Inhibition of NaCl Absorption Is Blunted in Thick Ascending Limbs From Dahl Salt-Sensitive Rats. Hypertension 2012, 60, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Vicente, A.; Saez, F.; Monzon, C.M.; Asirwatham, J.; Garvin, J.L. Thick ascending limb sodium transport in the pathogenesis of hypertension. Physiol. Rev. 2018, 99, 235–309. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.G.; Coffman, T.M.; Wilcox, C.S. Pathophysiology of hypertension: The mosaic theory and beyond. Circ. Res. 2021, 128, 847–863. [Google Scholar] [CrossRef]
- Lee, E.; Kim, N.; Kang, J.; Yoon, S.; Lee, H.-A.; Jung, H.; Kim, S.-H.; Kim, I. Activated pathogenic Th17 lymphocytes induce hypertension following high-fructose intake in Dahl salt-sensitive but not Dahl salt-resistant rats. Dis. Models Mech. 2020, 13, dmm044107. [Google Scholar] [CrossRef]
- Lee, S.; Jang, S.; Kim, J.Y.; Kim, I. Dahl Salt-Resistant Rat Is Protected against Hypertension during Diet-Induced Obesity. Nutrients 2022, 14, 3843. [Google Scholar] [CrossRef]
- Kim, C.-W.; Kim, J.Y.; Lee, S.; Kim, I. Dahl salt-resistant rats are protected against angiotensin II-induced hypertension. Biochem. Pharmacol. 2022, 203, 115193. [Google Scholar] [CrossRef]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012, 7, 1938. [Google Scholar] [CrossRef] [PubMed]
- Durant, L.; Watford, W.T.; Ramos, H.L.; Laurence, A.; Vahedi, G.; Wei, L.; Takahashi, H.; Sun, H.-W.; Kanno, Y.; Powrie, F. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 2010, 32, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 2007, 8, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yosef, N.; Thalhamer, T.; Zhu, C.; Xiao, S.; Kishi, Y.; Regev, A.; Kuchroo, V.K. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013, 496, 513–517. [Google Scholar] [CrossRef]
- Ouyang, W.; Beckett, O.; Ma, Q.; Paik, J.-h.; DePinho, R.A.; Li, M.O. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 2010, 11, 618–627. [Google Scholar] [CrossRef]
- Matthias, J.; Heink, S.; Picard, F.; Zeiträg, J.; Kolz, A.; Chao, Y.-Y.; Soll, D.; de Almeida, G.P.; Glasmacher, E.; Jacobsen, I.D. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J. Clin. Investig. 2020, 130, 4587–4600. [Google Scholar] [CrossRef]
- Taylor, L.E.; Gillis, E.E.; Musall, J.B.; Baban, B.; Sullivan, J.C. High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female Dahl salt-sensitive rats. Am. J. Physiol. -Heart Circ. Physiol. 2018, 315, H1713–H1723. [Google Scholar] [CrossRef]
- Almolda, B.; Costa, M.; Montoya, M.; Gonzalez, B.; Castellano, B. Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat. PLoS ONE 2011, 6, e27473. [Google Scholar] [CrossRef]
- Wilck, N.; Balogh, A.; Markó, L.; Bartolomaeus, H.; Müller, D.N. The role of sodium in modulating immune cell function. Nat. Rev. Nephrol. 2019, 15, 546–558. [Google Scholar] [CrossRef]
- van der Meer, J.W.; Netea, M.G. A salty taste to autoimmunity. New Engl. J. Med. 2013, 368, 2520–2521. [Google Scholar] [CrossRef]
- Weaver, C.T.; Hatton, R.D.; Mangan, P.R.; Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 2007, 25, 821–852. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010, 327, 1098–1102. [Google Scholar] [CrossRef]
- Harbour, S.N.; DiToro, D.F.; Witte, S.J.; Zindl, C.L.; Gao, M.; Schoeb, T.R.; Jones, G.W.; Jones, S.A.; Hatton, R.D.; Weaver, C.T. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci. Immunol. 2020, 5, eaaw2262. [Google Scholar] [CrossRef] [PubMed]
- Letterio, J.J.; Roberts, A.B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 1998, 16, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jin, W.; Hardegen, N.; Lei, K.-j.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S.M. Conversion of peripheral CD4+ CD25− naive T cells to CD4+ CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 2003, 198, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef]
- Zhou, L.; Lopes, J.E.; Chong, M.M.; Ivanov, I.I.; Min, R.; Victora, G.D.; Shen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 2008, 453, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, Y.; Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Investig. 2006, 116, 1218–1222. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Z.; Xiao, S.; Thalhamer, T.; Madi, A.; Han, T.; Kuchroo, V. SGK1 governs the reciprocal development of Th17 and regulatory T cells. Cell Rep. 2018, 22, 653–665. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, S.; Jang, S.; Kim, C.-W.; Gu, B.-H.; Kim, M.; Kim, I. T helper cell polarity determines salt sensitivity and hypertension development. Hypertens. Res. 2023, 46, 2168–2178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Kim, J.Y.; Kim, C.-W.; Kim, I. Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats. J. Cardiovasc. Dev. Dis. 2023, 10, 414. https://doi.org/10.3390/jcdd10100414
Jang S, Kim JY, Kim C-W, Kim I. Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats. Journal of Cardiovascular Development and Disease. 2023; 10(10):414. https://doi.org/10.3390/jcdd10100414
Chicago/Turabian StyleJang, Sungmin, Jee Young Kim, Cheong-Wun Kim, and Inkyeom Kim. 2023. "Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats" Journal of Cardiovascular Development and Disease 10, no. 10: 414. https://doi.org/10.3390/jcdd10100414
APA StyleJang, S., Kim, J. Y., Kim, C.-W., & Kim, I. (2023). Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats. Journal of Cardiovascular Development and Disease, 10(10), 414. https://doi.org/10.3390/jcdd10100414