Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = hydroxynitrile lyase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 798 KiB  
Article
Batch and Flow Nitroaldol Synthesis Catalysed by Granulicella tundricola Hydroxynitrile Lyase Immobilised on Celite R-633
by José Coloma, Lidwien Teeuwisse, Muhammad Afendi, Peter-Leon Hagedoorn and Ulf Hanefeld
Catalysts 2022, 12(2), 161; https://doi.org/10.3390/catal12020161 - 27 Jan 2022
Cited by 7 | Viewed by 2976
Abstract
Granulicella tundricola hydroxynitrile lyase (GtHNL) catalyses the synthesis of chiral (R)-cyanohydrins and (R)-β-nitro alcohols. The triple variant GtHNL-A40H/V42T/Q110H (GtHNL-3V) was immobilised on Celite R-633 and used in monophasic MTBE saturated with 100 mM KPi [...] Read more.
Granulicella tundricola hydroxynitrile lyase (GtHNL) catalyses the synthesis of chiral (R)-cyanohydrins and (R)-β-nitro alcohols. The triple variant GtHNL-A40H/V42T/Q110H (GtHNL-3V) was immobilised on Celite R-633 and used in monophasic MTBE saturated with 100 mM KPi buffer pH 7 for the synthesis of (R)-2-nitro-1-phenylethanol (NPE) in batch and continuous flow systems. Nitromethane was used as a nucleophile. A total of 82% of (R)-NPE and excellent enantioselectivity (>99%) were achieved in the batch system after 24 h of reaction time. GtHNL-3V on Celite R-633 was successfully recycled five times. During more recycling steps a significant decrease in yield was observed while the enantioselectivity remained excellent over eight cycles. The use of a flow system enabled the continuous synthesis of (R)-NPE. A total of 15% formation of (R)-NPE was reached using a flow rate of 0.1 mL min−1; unfortunately, the enzyme was not stable, and the yield decreased to 4% after 4 h on stream. A similar yield was observed during 15 h at a rate of 0.01 mL min−1. Surprisingly the use of a continuous flow system did not facilitate the process intensification. In fact, the batch system displayed a space-time-yield (STY/mgenzyme) of 0.10 g L−1 h−1 mgenzyme−1 whereas the flow system displayed 0.02 and 0.003 g L−1 h−1 mgenzyme−1 at 0.1 and 0.01 mL min−1, respectively. In general, the addition of 1 M nitromethane potentially changed the polarity of the reaction mixture affecting the stability of Celite-GtHNL-3V. The nature of the batch system maintained the reaction conditions better than the flow system. The higher yield and productivity observed for the batch system show that it is a superior system for the synthesis of (R)-NPE compared with the flow approach. Full article
(This article belongs to the Special Issue Biotransformation Catalyzed by Immobilized Enzyme)
Show Figures

Figure 1

14 pages, 1357 KiB  
Article
Immobilization of Arabidopsis thaliana Hydroxynitrile Lyase (AtHNL) on EziG Opal
by José Coloma, Tim Lugtenburg, Muhammad Afendi, Mattia Lazzarotto, Paula Bracco, Peter-Leon Hagedoorn, Lucia Gardossi and Ulf Hanefeld
Catalysts 2020, 10(8), 899; https://doi.org/10.3390/catal10080899 - 8 Aug 2020
Cited by 10 | Viewed by 4025
Abstract
Arabidopsis thaliana hydroxynitrile lyase (AtHNL) catalyzes the selective synthesis of (R)-cyanohydrins. This enzyme is unstable under acidic conditions, therefore its immobilization is necessary for the synthesis of enantiopure cyanohydrins. EziG Opal is a controlled porosity glass material for the [...] Read more.
Arabidopsis thaliana hydroxynitrile lyase (AtHNL) catalyzes the selective synthesis of (R)-cyanohydrins. This enzyme is unstable under acidic conditions, therefore its immobilization is necessary for the synthesis of enantiopure cyanohydrins. EziG Opal is a controlled porosity glass material for the immobilization of His-tagged enzymes. The immobilization of His6-tagged AtHNL on EziG Opal was optimized for higher enzyme stability and tested for the synthesis of (R)-mandelonitrile in batch and continuous flow systems. AtHNL-EziG Opal achieved 95% of conversion after 30 min of reaction time in batch and it was recycled up to eight times with a final conversion of 80% and excellent enantioselectivity. The EziG Opal carrier catalyzed the racemic background reaction; however, the high enantioselectivity observed in the recycling study demonstrated that this was efficiently suppressed by using citrate/phosphate buffer saturated methyl-tert-butylether (MTBE) pH 5 as reaction medium. The continuous flow system achieved 96% of conversion and excellent enantioselectivity at 0.1 mL min−1. Lower conversion and enantioselectivity were observed at higher flow rates. The specific rate of AtHNL-EziG Opal in flow was 0.26 mol h−1 genzyme−1 at 0.1 mL min−1 and 96% of conversion whereas in batch, the immobilized enzyme displayed a specific rate of 0.51 mol h−1 genzyme−1 after 30 min of reaction time at a similar level of conversion. However, in terms of productivity the continuous flow system proved to be almost four times more productive than the batch approach, displaying a space-time-yield (STY) of 690 molproduct h−1 L−1 genzyme−1 compared to 187 molproduct h−1 L−1 genzyme−1 achieved with the batch system. Full article
Show Figures

Graphical abstract

17 pages, 2304 KiB  
Article
Multi-Catalytic Route for the Synthesis of (S)-Tembamide
by Laura Leemans, Marc D. Walter, Frank Hollmann, Anett Schallmey and Luuk M. van Langen
Catalysts 2019, 9(10), 822; https://doi.org/10.3390/catal9100822 - 29 Sep 2019
Cited by 3 | Viewed by 4301
Abstract
Enantiopure β-amino alcohols constitute one of the most significant building blocks for the synthesis of active pharmaceutical ingredients. Despite the availability of a range of chiral β-amino alcohols from a chiral pool, there is a growing demand for new enantioselective synthetic routes to [...] Read more.
Enantiopure β-amino alcohols constitute one of the most significant building blocks for the synthesis of active pharmaceutical ingredients. Despite the availability of a range of chiral β-amino alcohols from a chiral pool, there is a growing demand for new enantioselective synthetic routes to vicinal amino alcohols and their derivatives. In the present study, an asymmetric 2-step catalytic route that converts 4-anisaldehyde into a β-amino alcohol derivative, (S)-tembamide, with excellent enantiopurity (98% enantiomeric excess) has been developed. The recently published initial step consists in a concurrent biocatalytic cascade for the synthesis of (S)-4-methoxymandelonitrile benzoate. The O-benzoyl cyanohydrin is then converted to (S)-tembamide in a hydrogenation reaction catalyzed by Raney Ni. To achieve hydrogenation of the nitrile moiety with highest chemoselectivity and enantioretention, various parameters such as nature of the catalyst, reaction temperature and hydrogen pressure were studied. The reported strategy might be transferrable to the synthesis of other N-acyl-β-amino alcohols. Full article
Show Figures

Graphical abstract

17 pages, 2848 KiB  
Article
Bienzymatic Cascade for the Synthesis of an Optically Active O-benzoyl Cyanohydrin
by Laura Leemans, Luuk van Langen, Frank Hollmann and Anett Schallmey
Catalysts 2019, 9(6), 522; https://doi.org/10.3390/catal9060522 - 12 Jun 2019
Cited by 9 | Viewed by 3669
Abstract
A concurrent bienzymatic cascade for the synthesis of optically pure (S)-4-methoxymandelonitrile benzoate ((S)-3) starting from 4-anisaldehyde (1) has been developed. The cascade involves an enantioselective Manihot esculenta hydroxynitrile lyase-catalyzed hydrocyanation of 1, and the [...] Read more.
A concurrent bienzymatic cascade for the synthesis of optically pure (S)-4-methoxymandelonitrile benzoate ((S)-3) starting from 4-anisaldehyde (1) has been developed. The cascade involves an enantioselective Manihot esculenta hydroxynitrile lyase-catalyzed hydrocyanation of 1, and the subsequent benzoylation of the resulting cyanohydrin (S)-2 catalyzed by Candida antarctica lipase A in organic solvent. To accomplish this new direct synthesis of the protected enantiopure cyanohydrin, both enzymes were immobilized and each biocatalytic step was studied separately in search for a window of compatibility. In addition, potential cross-interactions between the two reactions were identified. Optimization of the cascade resulted in 81% conversion of the aldehyde to the corresponding benzoyl cyanohydrin with 98% enantiomeric excess. Full article
(This article belongs to the Special Issue Biocatalysis: Chemical Biosynthesis)
Show Figures

Graphical abstract

10 pages, 2057 KiB  
Article
Immobilization of Prunus amygdalus Hydroxynitrile Lyase on Celite
by Paula Bracco, Guzman Torrelo, Sander Noordam, Glenn De Jong and Ulf Hanefeld
Catalysts 2018, 8(7), 287; https://doi.org/10.3390/catal8070287 - 17 Jul 2018
Cited by 12 | Viewed by 4983
Abstract
The hydroxynitrile lyase from Prunus amygdalus was immobilized on Celite R-633. The immobilized enzyme could successfully be utilized in buffer saturated MTBE and excellent conversions of benzaldehyde to R-mandelonitrile were observed. No leaching occurred. To achieve high enantioselectivities, the suppression of the [...] Read more.
The hydroxynitrile lyase from Prunus amygdalus was immobilized on Celite R-633. The immobilized enzyme could successfully be utilized in buffer saturated MTBE and excellent conversions of benzaldehyde to R-mandelonitrile were observed. No leaching occurred. To achieve high enantioselectivities, the suppression of the undesired background reaction was essential. This could be achieved by high enzyme loadings and the tight packing of the immobilized enzymes. When the immobilized enzyme is loosely packed, both the enzyme catalysis and the background reaction accelerates and only a modest enantioselectivity is observed. The enzyme was recycled for up to ten times, with some loss of activity and also enantioselectivity after 5 cycles, independent of packing. Full article
(This article belongs to the Special Issue Immobilized Biocatalysts)
Show Figures

Graphical abstract

39 pages, 3871 KiB  
Review
Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts
by Mika Zagrobelny, Érika Cristina Pinheiro De Castro, Birger Lindberg Møller and Søren Bak
Insects 2018, 9(2), 51; https://doi.org/10.3390/insects9020051 - 3 May 2018
Cited by 41 | Viewed by 10788
Abstract
Chemical defences are key components in insect–plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are [...] Read more.
Chemical defences are key components in insect–plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are stabilised by a glucoside linkage, which is hydrolysed by the action of β-glucosidase enzymes, resulting in the release of toxic hydrogen cyanide and deterrent aldehydes or ketones. Such a binary system of components that are chemically inert when spatially separated provides an immediate defence against predators that cause tissue damage. Further roles in nitrogen metabolism and inter- and intraspecific communication has also been suggested for cyanogenic glucosides. In arthropods, cyanogenic glucosides are found in millipedes, centipedes, mites, beetles and bugs, and particularly within butterflies and moths. Cyanogenic glucosides may be even more widespread since many arthropod taxa have not yet been analysed for the presence of this class of natural products. In many instances, arthropods sequester cyanogenic glucosides or their precursors from food plants, thereby avoiding the demand for de novo biosynthesis and minimising the energy spent for defence. Nevertheless, several species of butterflies, moths and millipedes have been shown to biosynthesise cyanogenic glucosides de novo, and even more species have been hypothesised to do so. As for higher plant species, the specific steps in the pathway is catalysed by three enzymes, two cytochromes P450, a glycosyl transferase, and a general P450 oxidoreductase providing electrons to the P450s. The pathway for biosynthesis of cyanogenic glucosides in arthropods has most likely been assembled by recruitment of enzymes, which could most easily be adapted to acquire the required catalytic properties for manufacturing these compounds. The scattered phylogenetic distribution of cyanogenic glucosides in arthropods indicates that the ability to biosynthesise this class of natural products has evolved independently several times. This is corroborated by the characterised enzymes from the pathway in moths and millipedes. Since the biosynthetic pathway is hypothesised to have evolved convergently in plants as well, this would suggest that there is only one universal series of unique intermediates by which amino acids are efficiently converted into CNglcs in different Kingdoms of Life. For arthropods to handle ingestion of cyanogenic glucosides, an effective detoxification system is required. In butterflies and moths, hydrogen cyanide released from hydrolysis of cyanogenic glucosides is mainly detoxified by β-cyanoalanine synthase, while other arthropods use the enzyme rhodanese. The storage of cyanogenic glucosides and spatially separated hydrolytic enzymes (β-glucosidases and α-hydroxynitrile lyases) are important for an effective hydrogen cyanide release for defensive purposes. Accordingly, such hydrolytic enzymes are also present in many cyanogenic arthropods, and spatial separation has been shown in a few species. Although much knowledge regarding presence, biosynthesis, hydrolysis and detoxification of cyanogenic glucosides in arthropods has emerged in recent years, many exciting unanswered questions remain regarding the distribution, roles apart from defence, and convergent evolution of the metabolic pathways involved. Full article
(This article belongs to the Special Issue Chemical Ecology)
Show Figures

Graphical abstract

Back to TopTop