Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = hydroxyhydroquinone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1926 KB  
Article
DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice
by Keiko Unno, Kyoko Taguchi, Tadashi Hase, Shinichi Meguro and Yoriyuki Nakamura
Int. J. Mol. Sci. 2024, 25(2), 720; https://doi.org/10.3390/ijms25020720 - 5 Jan 2024
Cited by 1 | Viewed by 1349
Abstract
Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced [...] Read more.
Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 4000 KB  
Article
Hydroxyhydroquinone and Quassinoids as Promising Compounds with Hypoglycemic Activity through Redox Balance
by Paulo R. dos Santos, Sidinéia Danetti, A. Joseph Rastegar, Wellington V. de Souza, Rafaele Frassini, Fernando J. Scariot, Sidnei Moura and Mariana Roesch-Ely
Compounds 2024, 4(1), 17-36; https://doi.org/10.3390/compounds4010002 - 3 Jan 2024
Viewed by 2037
Abstract
In the present study, an insulin-resistant cell model (human hepatocellular carcinoma cell line: HepG2) was chosen to investigate the efficacy of two compound classes and their common molecular motif for glycemic control and insulin sensitization. The two compounds’ classes were flavonoid extracts from [...] Read more.
In the present study, an insulin-resistant cell model (human hepatocellular carcinoma cell line: HepG2) was chosen to investigate the efficacy of two compound classes and their common molecular motif for glycemic control and insulin sensitization. The two compounds’ classes were flavonoid extracts from Rourea cuspidata and quassinoid extracts from Picrasma crenata. The flavonoid-like hydroxyhydroquinone (HHQ) was synthesized. HepG2 cells were tested in a high-glucose environment (HepG2/IRM) by monitoring ROS activity, the concentration of adenosine triphosphate (ATP), and the measurement of mitochondrial membrane potential (MMP). The expression of forkhead box O1 (FOXO1) protein, which mediates gluconeogenesis and insulin resistance, was also investigated using indirect immunocytochemistry and Western blot techniques. A significant increase in glucose uptake and well-regulated ATP concentrations were observed in the treated cells. The downregulation of FOXO1 expression was seen in cells treated with HHQ and quassinoids in comparison to cells treated with flavonoids. This study provides a pharmacological basis for the application of HHQ, quassinoids from P. crenata, and flavonoids from R. cuspidata in the treatment of metabolic diseases such as type 2 diabetes mellitus. Full article
Show Figures

Graphical abstract

20 pages, 6537 KB  
Article
The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Nepenthes miranda against Single-Stranded DNA-Binding Protein and Oral Carcinoma Cells
by En-Shyh Lin, Yen-Hua Huang, Jo-Chi Chung, Hsin-Hui Su and Cheng-Yang Huang
Plants 2023, 12(11), 2188; https://doi.org/10.3390/plants12112188 - 31 May 2023
Cited by 9 | Viewed by 2164
Abstract
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory [...] Read more.
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory effects on recombinant single-stranded DNA-binding protein (SSB) from Klebsiella pneumoniae (KpSSB). SSB is essential for DNA replication and cell survival and thus an attractive target for potential antipathogen chemotherapy. Different extracts prepared from Sinningia bullata, a tuberous member of the flowering plant family Gesneriaceae, were also used to investigate anti-KpSSB properties. Among these extracts, the stem extract of N. miranda exhibited the highest anti-KpSSB activity with an IC50 value of 15.0 ± 1.8 μg/mL. The cytotoxic effects of the stem extract of N. miranda on the survival and apoptosis of the cancer cell lines Ca9-22 gingival carcinoma, CAL27 oral adenosquamous carcinoma, PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were also demonstrated and compared. Based on collective data, the cytotoxic activities of the stem extract at a concentration of 20 μg/mL followed the order Ca9-22 > CAL27 > PC9 > 4T1 > B16F10 cells. The stem extract of N. miranda at a concentration of 40 μg/mL completely inhibited Ca9-22 cell migration and proliferation. In addition, incubation with this extract at a concentration of 20 μg/mL boosted the distribution of the G2 phase from 7.9% to 29.2% in the Ca9-22 cells; in other words, the stem extract might suppress Ca9-22 cell proliferation by inducing G2 cell cycle arrest. Through gas chromatography–mass spectrometry, the 16 most abundant compounds in the stem extract of N. miranda were tentatively identified. The 10 most abundant compounds in the stem extract of N. miranda were used for docking analysis, and their docking scores were compared. The binding capacity of these compounds was in the order sitosterol > hexadecanoic acid > oleic acid > plumbagin > 2-ethyl-3-methylnaphtho[2,3-b]thiophene-4,9-dione > methyl α-d-galactopyranoside > 3-methoxycatechol > catechol > pyrogallol > hydroxyhydroquinone; thus, sitosterol might exhibit the greatest inhibitory capacity against KpSSB among the selected compounds. Overall, these results may indicate the pharmacological potential of N. miranda for further therapeutic applications. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Plants and Their Constituents)
Show Figures

Figure 1

21 pages, 733 KB  
Review
Coffee and Endothelial Function: A Coffee Paradox?
by Yukihito Higashi
Nutrients 2019, 11(9), 2104; https://doi.org/10.3390/nu11092104 - 4 Sep 2019
Cited by 52 | Viewed by 14583
Abstract
Coffee is a popular beverage throughout the world. Coffee contains various chemical compounds (e.g., caffeine, chlorogenic acids, hydroxyhydroquinone, kahweol, cafestol, and complex chemical mixtures). Caffeine is also the most widely consumed pharmacological substance in the world and is included in various beverages (e.g., [...] Read more.
Coffee is a popular beverage throughout the world. Coffee contains various chemical compounds (e.g., caffeine, chlorogenic acids, hydroxyhydroquinone, kahweol, cafestol, and complex chemical mixtures). Caffeine is also the most widely consumed pharmacological substance in the world and is included in various beverages (e.g., coffee, tea, soft drinks, and energy drinks), products containing chocolate, and drugs. The effects of coffee and caffeine on cardiovascular diseases remain controversial. It is well known that there are J-curve-type or U-curve-type associations of coffee consumption with cardiovascular events including myocardial infarction and stroke. However, there is little information on the direct and indirect effects of coffee consumption on endothelial function in humans. It is likely that the coffee paradox or caffeine paradox exists the association of coffee intake with cardiovascular diseases, cardiovascular outcomes, and endothelial function. This review focusses on the effects of coffee and caffeine on endothelial function from molecular mechanisms to clinical perspectives. Full article
(This article belongs to the Special Issue Diet and Vascular Function)
Show Figures

Figure 1

10 pages, 251 KB  
Article
Effects of Chlorogenic Acid-Enriched and Hydroxyhydroquinone-Reduced Coffee on Postprandial Fat Oxidation and Antioxidative Capacity in Healthy Men: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial
by Shun Katada, Takuya Watanabe, Tomohito Mizuno, Shinichi Kobayashi, Masao Takeshita, Noriko Osaki, Shigeru Kobayashi and Yoshihisa Katsuragi
Nutrients 2018, 10(4), 525; https://doi.org/10.3390/nu10040525 - 23 Apr 2018
Cited by 20 | Viewed by 8038
Abstract
Chlorogenic acids (CGAs) reduce blood pressure and body fat, and enhance fat metabolism. In roasted coffee, CGAs exist together with the oxidant component hydroxyhydroquinone (HHQ). HHQ counteracts the antihypertensive effects of CGA, but its effects on CGA-induced fat oxidation (FOX) are unknown. Here [...] Read more.
Chlorogenic acids (CGAs) reduce blood pressure and body fat, and enhance fat metabolism. In roasted coffee, CGAs exist together with the oxidant component hydroxyhydroquinone (HHQ). HHQ counteracts the antihypertensive effects of CGA, but its effects on CGA-induced fat oxidation (FOX) are unknown. Here we assessed the effects of CGA-enriched and HHQ-reduced coffee on FOX. Fifteen healthy male volunteers (age: 38 ± 8 years (mean ± SD); BMI: 22.4 ± 1.5 kg/m2) participated in this crossover study. Subjects consumed the test beverage (coffee) containing the same amount of CGA with HHQ (CGA-HHQ(+)) or without HHQ (CGA-HHQ(−)) for four weeks. Postprandial FOX and the ratio of the biological antioxidant potential (BAP) to the derivatives of reactive oxygen metabolites (d-ROMs) as an indicator of oxidative stress were assessed. After the four-week intervention, postprandial FOX and the postprandial BAP/d-ROMs ratio were significantly higher in the CGA-HHQ(−) group compared with the CGA-HHQ(+) group (4 ± 23 mg/min, group effect: p = 0.040; 0.27 ± 0.74, group effect: p = 0.007, respectively). In conclusion, reducing the amount of HHQ facilitated the postprandial FOX effects of CGA in coffee. Our findings also suggest that the mechanism underlying the inhibition of FOX by HHQ is related to postprandial oxidative stress. Full article
(This article belongs to the Special Issue Dietary Bioactives and Human Health)
Back to TopTop