Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = hydrothermal mound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 25801 KB  
Article
A Large-Scale Focused Fluid Flow Zone Between Atolls in the Xisha Islands (South China Sea): Types, Characteristics, and Evolution
by Jixiang Zhao, Benjun Ma, Zhiliang Qin, Wenjian Lan, Benyu Zhu, Shuyi Pang, Mingzhe Li and Ruining Wang
J. Mar. Sci. Eng. 2025, 13(2), 216; https://doi.org/10.3390/jmse13020216 - 23 Jan 2025
Viewed by 1191
Abstract
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow [...] Read more.
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow system, five geological structures are recognized and described in detail, including pockmarks, volcanic mounds, pipes, faults, and forced folds. Pockmarks and volcanic mounds occur as clustered groups and their distributions are related to two large-scale volcanic zones with chaotic seismic reflections. Pipes, characterized by disordered seismic reflections, mainly occur within the focused fluid flow zone (FFFZ) and directly link with the large-scale deep volcano and its surrounding areas. Faults and fractures mainly occur along pipes and extend to the seafloor, commonly presenting lateral walls of mega-pockmarks. Forced folds are primarily clustered above volcanic zones and commonly restricted between faults or pipes, characterized by sediment deformations as indicated in seismic profiles. By comprehensive analysis of the above observations and a simplified simulation model, the volcanism-induced hydrothermal fluid activities are argued herein to contribute to these focused fluid flow structures. In addition, traces of suspected submarine instability disasters such as landslides have been found in this sea area, and more observational data will be needed to determine whether seafloor fluid flow zones can be used as a predictor of seafloor instability in the future. Full article
Show Figures

Figure 1

17 pages, 2465 KB  
Article
Deciphering the Evolution of Adjacent Volcanogenic Massive Sulfide (VMS) Systems Based on Radiogenic and Stable Isotopes, the Case of Ermioni, Argolis Peninsula, Ne Peloponnese, Greece
by Stavros Savvas Triantafyllidis and Stylianos Fotios Tombros
Minerals 2023, 13(4), 474; https://doi.org/10.3390/min13040474 - 27 Mar 2023
Viewed by 2913
Abstract
The study follows previous work on Ermioni VMS and addresses in detail the formation and evolution of two adjacent VMS systems, Karakasi and Roro. It is based on a stable and radiogenic isotopic composition of sulfides and ganguefrom stringer (Karakasi) and massive (Roro) [...] Read more.
The study follows previous work on Ermioni VMS and addresses in detail the formation and evolution of two adjacent VMS systems, Karakasi and Roro. It is based on a stable and radiogenic isotopic composition of sulfides and ganguefrom stringer (Karakasi) and massive (Roro) VMS ore. The isotopic geochemistry of Pb and noble gases (Ar-He) of pyrite from both sites indicates the development of a deep and evolved heat and possibly metal source attributed to subduction of radiogenic material (Pindos oceanic crust). The differences in the stable (Fe, S) and radiogenic (Sr, Ar) isotopic compositions between the two sites depict variation in the geologic environment of VMS formation, and in particular the effect of seawater. The higher δ57Fe and δ34S values of Roro massive pyrite are attributed to direct interaction of hot, ascending metal-bearing hydrothermal fluids with cold seawater. Karakasi stringer oreis characterized by higher 87Sr/86Sr ratios and radiogenic Ar values (as 40Ar/36Ar), indicating interaction of ore-bearing, hydrothermal fluids with crustal material (hanging-wall turbidites). During the approximate 0.5 Ma period separating the two systems, the hydrothermal system migrated from east to west, and at the same time evolved from free discharge on the seafloor (Roro—easterly), resembling contemporary seafloor style and mound-shaped massive sulfides, to a sediment-confined, subseafloor system (Karakasi—westerly). Full article
Show Figures

Figure 1

32 pages, 7261 KB  
Article
Adaptive Disturbance-Observer-Based Continuous Sliding Mode Control for Small Autonomous Underwater Vehicles in the Trans-Atlantic Geotraverse Hydrothermal Field with Trajectory Modeling Based on the Path
by Guofang Chen, Yihui Liu, Ziyang Zhang and Yufei Xu
J. Mar. Sci. Eng. 2022, 10(6), 721; https://doi.org/10.3390/jmse10060721 - 24 May 2022
Cited by 5 | Viewed by 2585
Abstract
Considering intense hydrothermal activities and rugged topography in a near-bottom environment of the trans-Atlantic geotraverse (TAG) hydrothermal mound, a small autonomous underwater vehicle (S-AUV) will suffer from time-varying disturbances, model uncertainties, actuator faults, and input saturations. To handle these issues, a fault-tolerant adaptive [...] Read more.
Considering intense hydrothermal activities and rugged topography in a near-bottom environment of the trans-Atlantic geotraverse (TAG) hydrothermal mound, a small autonomous underwater vehicle (S-AUV) will suffer from time-varying disturbances, model uncertainties, actuator faults, and input saturations. To handle these issues, a fault-tolerant adaptive robust sliding mode control method is presented in this paper. Firstly, unknown disturbances, model uncertainties, and actuator faults of the S-AUV are synthesized into a lumped uncertain vector. Without requiring the upper bound and gradient of the uncertainties, a continuous adaptive finite-time extended state observer is designed to estimate the lumped uncertain vector. Then, an auxiliary dynamic system composed of continuous functions is introduced to deal with input saturations, thereby contributing to achieving fixed-time trajectory tracking control of S-AUVs. Based on a designed continuous fixed-time nonsingular fast sliding mode surface, the proposed continuous adaptive controller is chattering free. Simulated topography is built according to topographic data of the TAG mound, and a smooth trajectory model is constructed by cubic spline interpolation. Comprehensive simulations performed on an actual S-AUV model are given to validate the effectiveness and superiority of the presented algorithm. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

34 pages, 38453 KB  
Article
Silica Sinter and the Evolution of Hot Springs in the Alvord/Pueblo Valleys, Southeast Oregon, USA
by Leslie Allen Mowbray and Michael L. Cummings
Energies 2021, 14(21), 7186; https://doi.org/10.3390/en14217186 - 2 Nov 2021
Cited by 3 | Viewed by 3576
Abstract
Hot springs in the Alvord/Pueblo valleys in southeastern Oregon are analogous to Basin-and-Range hydrothermal systems where heat source and permeable pathways are met through crustal thinning. Silica sinter deposition at Mickey Springs, Alvord Valley, predates the late Pleistocene high stand of pluvial Lake [...] Read more.
Hot springs in the Alvord/Pueblo valleys in southeastern Oregon are analogous to Basin-and-Range hydrothermal systems where heat source and permeable pathways are met through crustal thinning. Silica sinter deposition at Mickey Springs, Alvord Valley, predates the late Pleistocene high stand of pluvial Lake Alvord. At Borax Lake, Pueblo Valley, sinter deposition occurred during the Holocene. This study examines the evolution of springs at Mickey Springs, where three morphologies of sinter are present: (1) basalt clasts surrounded by sinter in interbedded conglomerate and sandstone, (2) pool-edge and aprons of sinter surrounding depressions (12–32 m diameter), and (3) quaquaversal sinter mounds with pool-edge sinter. The oldest sinter occurs in silica-cemented conglomerate and sandstone, where deposition occurred prior to 30 kya. Deposition around broad depressions and mounds occurred after 30 kya but before water levels began to rise in pluvial Lake Alvord. Thermoluminescence dates suggest sinter deposition ceased before 18 kya when silt and clay filled inactive vents and buried aprons. A few mounds hosted active springs after sinter deposition ceased but while submerged in pluvial Lake Alvord. Now, high-temperature springs, steam vents, and mud pots are concentrated in a 50 × 50 m area near the southern edge of the spring area. Full article
(This article belongs to the Special Issue Geothermal Systems)
Show Figures

Graphical abstract

19 pages, 40153 KB  
Article
Igneous Activity and Structural Development of the Mianhua Terrace, Offshore North Taiwan
by Jih-Hsin Chang, Eason Yi-Cheng Yang, Ho-Han Hsu, Tzu-Ting Chen, Char-Shine Liu and Shye-Donq Chiu
Minerals 2021, 11(3), 303; https://doi.org/10.3390/min11030303 - 16 Mar 2021
Cited by 4 | Viewed by 3933
Abstract
Using bathymetric and multichannel seismic (MCS) data, we explored the volcanic influence on the bathymetric and stratigraphic features of the Mianhua Terrace. The Mianhua Terrace occupies the marine counterpart of the Northern Taiwan Volcanic Zone (NTVZ) along the collapsed Taiwan orogenic wedge and [...] Read more.
Using bathymetric and multichannel seismic (MCS) data, we explored the volcanic influence on the bathymetric and stratigraphic features of the Mianhua Terrace. The Mianhua Terrace occupies the marine counterpart of the Northern Taiwan Volcanic Zone (NTVZ) along the collapsed Taiwan orogenic wedge and is dominated by post-collisional magmatism and extensional structures. The bathymetric data showed several semicircular-shaped features near the shelf break. The MCS profiles showed that the Pleistocene unconformity buried beneath the Mianhua Terrace is partly difficult to observe due to seafloor multiples, suggesting that the seafloor is dominated by physically hard lithology, probably volcanic lavas. We interpreted the high-amplitude reflectors and their projected seafloor relief as intrusive sills and associated extrusive edifice. Similarly, we interpreted high-amplitude reflectors in the vicinity of normal faults as intrusive sills emplaced and facilitated by fault structures. A volcanic or hydrothermal mound was also recognized. We propose that the Mianhua Terrace is a breached ramp in a transfer zone between the tips of two successive normal faults along the shelf break. Once the fault tips reactivate and extend toward each other, the Mianhua Terrace may continue to collapse, leading to catastrophic volcanic or associated hydrothermal events. Full article
(This article belongs to the Special Issue Igneous Intrusions in 3D)
Show Figures

Figure 1

25 pages, 9499 KB  
Article
Arsenian Pyrite and Cinnabar from Active Submarine Nearshore Vents, Paleochori Bay, Milos Island, Greece
by Panagiotis Voudouris, Marianna Kati, Andreas Magganas, Manuel Keith, Eugenia Valsami-Jones, Karsten Haase, Reiner Klemd and Mark Nestmeyer
Minerals 2021, 11(1), 14; https://doi.org/10.3390/min11010014 - 25 Dec 2020
Cited by 15 | Viewed by 6909
Abstract
Active, shallow-water (2–10 m below sea level) and low temperature (up to 115 °C) hydrothermal venting at Paleochori Bay, nearshore Milos Island, Greece, discharges CO2 and H2S rich vapors (e.g., low-Cl fluid) and high-salinity liquids, which leads to a diverse [...] Read more.
Active, shallow-water (2–10 m below sea level) and low temperature (up to 115 °C) hydrothermal venting at Paleochori Bay, nearshore Milos Island, Greece, discharges CO2 and H2S rich vapors (e.g., low-Cl fluid) and high-salinity liquids, which leads to a diverse assemblage of sulfide and alteration phases in an area of approximately 1 km2. Volcaniclastic detritus recovered from the seafloor is cemented by hydrothermal pyrite and marcasite, while semi-massive to massive pyrite-marcasite constitute mounds and chimney-like edifices. Paragenetic relationships indicate deposition of two distinct mineralogical assemblages related to the venting of high-Cl and low-Cl fluids, respectively: (1) colloform As- and Hg-bearing pyrite (Py I), associated with marcasite, calcite, and apatite, as well as (2) porous and/or massive As-rich pyrite (Py II), associated with barite, alunite/jarosite, and late-stage hydrous ferric oxides. Mercury, in the form of cinnabar, occurs within the As-rich pyrite (Py I) layers, usually forming distinct cinnabar-enriched micro-layers. Arsenic in colloform pyrite I shows a negative correlation with S indicating that As1− dominates in the pyrite structure suggesting formation from a relatively reducing As-rich fluid at conditions similar to low-sulfidation epithermal systems. On the contrary, As3+ dominates in the structure of porous to massive pyrite II suggesting deposition from a sulfate-dominated fluid with lower pH and higher fO2. Bulk sulfide data of pyrite-bearing hydrothermal precipitates also show elevated As (up to 2587 ppm) together with various epithermal-type elements, such as Sb (up to 274 ppm), Tl (up to 513 ppm), and Hg (up to 34 ppm) suggesting an epithermal nature for the hydrothermal activity at Paleochori Bay. Textural relationships indicate a contemporaneous deposition of As and Hg, which is suggested to be the result of venting from both high-salinity, liquid-dominated, as well as CO2- and H2S-rich vapor-dominated fluids that formed during fluid boiling. The CO2- and H2S-rich vapor that physically separated during fluid boiling from the high-salinity liquid led to calcite formation upon condensation in seawater together with the precipitation of As- and Hg-bearing pyrite I. This also led to the formation of sulfuric acid, thereby causing leaching and dissolution of primary iron-rich minerals in the volcaniclastic sediments, finally resulting in pyrite II precipitation in association with alunite/jarosite. The Paleochori vents contain the first documented occurrence of cinnabar on the seafloor in the Mediterranean area and provide an important link between offshore hydrothermal activity and the onshore mercury and arsenic mineralizing system on Milos Island. The results of this study therefore demonstrate that metal and metalloid precipitation in shallow-water continental arc environments is controlled by epithermal processes known from their subaerial analogues. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Deposits 2020)
Show Figures

Figure 1

25 pages, 26285 KB  
Article
Alteration and Mineralization Products of the Zannone Giant Pockmark (Zannone Hydrothermal Field, Central Tyrrhenian Sea)
by Aida Maria Conte, Letizia Di Bella, Michela Ingrassia, Cristina Perinelli and Eleonora Martorelli
Minerals 2020, 10(7), 581; https://doi.org/10.3390/min10070581 - 27 Jun 2020
Cited by 6 | Viewed by 3169
Abstract
The Zannone Giant Pockmark (ZGP) is a shallow-water (<−150 m) giant depression located on the shelf off Zannone Island (Pontine Archipelago, central Tyrrhenian Sea, Italy), hosting active hydrothermal vents. The ZGP seabed displays different fluid-venting morphologies (pockmarks, lithified pavements, mounds, and cone-shaped structures) [...] Read more.
The Zannone Giant Pockmark (ZGP) is a shallow-water (<−150 m) giant depression located on the shelf off Zannone Island (Pontine Archipelago, central Tyrrhenian Sea, Italy), hosting active hydrothermal vents. The ZGP seabed displays different fluid-venting morphologies (pockmarks, lithified pavements, mounds, and cone-shaped structures) and widespread bacterial communities. In this study, we analyzed ROV (Remote Operated Vehicle) images to gain information on seabed geology and the textural, mineralogical, and geochemical composition of authigenic crusts and gravel-sized clasts sampled close to active emissions. ROV images show authigenic dome-shaped crusts composed of native sulfur associated with barite, gypsum, amorphous silica, and secondary hydrothermal minerals (illite–montmorillonite). The gravel-sized clasts are mostly rhyolites strongly affected by hydrothermal alteration (Alteration Index > 88; depletion of some mobile elements and enrichment of some base metals), causing feldspar-destruction, silicification, formation of hydrothermal phyllosilicates, and precipitation of disseminated pyrite. More intense alteration implying the complete obliteration of the primary mineralogy or fabric is represented by quartz-pyrite samples. ZGP seabed morphology and petro-geochemical features of deposits point to the possible occurrence of a sulfide system linked to the degassing of magma similar to that feeding the Pleistocene products of Ponza Island. Full article
(This article belongs to the Special Issue Elemental and Isotope Geochemistry of the Earth’s Critical Zone)
Show Figures

Figure 1

34 pages, 5876 KB  
Article
The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge
by Ana Filipa A. Marques, Desiree L. Roerdink, Tamara Baumberger, Cornel E. J. de Ronde, Robert G. Ditchburn, Alden Denny, Ingunn H. Thorseth, Ingeborg Okland, Marvin D. Lilley, Martin J. Whitehouse and Rolf B. Pedersen
Minerals 2020, 10(5), 439; https://doi.org/10.3390/min10050439 - 15 May 2020
Cited by 9 | Viewed by 7036
Abstract
We document the discovery of an active, shallow, seafloor hydrothermal system (known as the Seven Sisters Vent Field) hosted in mafic volcaniclasts at a mid-ocean ridge setting. The vent field is located at the southern part of the Arctic mid-ocean ridge where it [...] Read more.
We document the discovery of an active, shallow, seafloor hydrothermal system (known as the Seven Sisters Vent Field) hosted in mafic volcaniclasts at a mid-ocean ridge setting. The vent field is located at the southern part of the Arctic mid-ocean ridge where it lies on top of a flat-topped volcano at ~130 m depth. Up to 200 °C phase-separating fluids vent from summit depressions in the volcano, and from pinnacle-like edifices on top of large hydrothermal mounds. The hydrothermal mineralization at Seven Sisters manifests as a replacement of mafic volcaniclasts, as direct intraclast precipitation from the hydrothermal fluid, and as elemental sulfur deposition within orifices. Barite is ubiquitous, and is sequentially replaced by pyrite, which is the first sulfide to form, followed by Zn-Cu-Pb-Ag bearing sulfides, sulfosalts, and silica. The mineralized rocks at Seven Sisters contain highly anomalous concentrations of ‘epithermal suite’ elements such as Tl, As, Sb and Hg, with secondary alteration assemblages including silica and dickite. Vent fluids have a pH of ~5 and are Ba and metal depleted. Relatively high dissolved Si (~7.6 mmol/L Si) combined with low (0.2–0.4) Fe/Mn suggest high-temperature reactions at ~150 bar. A δ13C value of −5.4‰ in CO2 dominated fluids denotes magmatic degassing from a relatively undegassed reservoir. Furthermore, low CH4 and H2 (<0.026 mmol/kg and <0.009 mmol/kg, respectively) and 3He/4He of ~8.3 R/Racorr support a MORB-like, sediment-free fluid signature from an upper mantle source. Sulfide and secondary alteration mineralogy, fluid and gas chemistry, as well as δ34S and 87Sr/86Sr values in barite and pyrite indicate that mineralization at Seven Sisters is sustained by the input of magmatic fluids with minimal seawater contribution. 226Ra/Ba radiometric dating of the barite suggests that this hydrothermal system has been active for at least 4670 ± 60 yr. Full article
(This article belongs to the Special Issue Marine Geology and Minerals)
Show Figures

Figure 1

37 pages, 32209 KB  
Article
Biotic–Abiotic Influences on Modern Ca–Si-Rich Hydrothermal Spring Mounds of the Pastos Grandes Volcanic Caldera (Bolivia)
by Cédric Bougeault, Emmanuelle Vennin, Christophe Durlet, Elodie Muller, Mathilde Mercuzot, Marco Chavez, Emmanuelle Gérard, Magali Ader, Aurélien Virgone and Eric C. Gaucher
Minerals 2019, 9(6), 380; https://doi.org/10.3390/min9060380 - 23 Jun 2019
Cited by 23 | Viewed by 5842
Abstract
The lacustrine-to-palustrine Pastos Grandes Laguna (Bolivia) is located in a volcanic caldera fed by active hot springs, with a carbonate crust extending over 40 km2. An integrated approach based on geology and hydrochemistry was used to characterize La Salsa, one of [...] Read more.
The lacustrine-to-palustrine Pastos Grandes Laguna (Bolivia) is located in a volcanic caldera fed by active hot springs, with a carbonate crust extending over 40 km2. An integrated approach based on geology and hydrochemistry was used to characterize La Salsa, one of its hydrothermal systems, composed of a flat mound with a hydrothermal discharge. The mound is composed of carbonate–diatom aggregates, forming muds that accumulate and undergo slight swelling. The discharge area along the hydrothermal pathway exhibits several facies and microfabrics, with considerable biological activity and microbialite development. Both the downstream evolution of carbonate and silica content in sediments and the distribution of microbialites can be linked to changes in biotic-abiotic processes occurring along the pathway. The spatial distribution of microbialites and their morphologies are related to hydrodynamic conditions, the nature of the substrate on which they grow and, to a lesser extent, to the accommodation space available. The evolution of the physicochemical properties of the water and biological activity mainly impact mineral precipitation but also affect microbialite morphologies and microstructures. This atypical Si- and Ca-rich hydrothermal system therefore provides insights into the diversity of environmental, chemical, and biotic factors controlling mineralization, which also responds to independent thermodynamic controls. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

29 pages, 2167 KB  
Review
Green Rust: The Simple Organizing ‘Seed’ of All Life?
by Michael J. Russell
Life 2018, 8(3), 35; https://doi.org/10.3390/life8030035 - 27 Aug 2018
Cited by 84 | Viewed by 15495
Abstract
Korenaga and coworkers presented evidence to suggest that the Earth’s mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes [...] Read more.
Korenaga and coworkers presented evidence to suggest that the Earth’s mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes that produced the thick, dense, and relatively stable oceanic crust. In that setting, two distinct and major types of sub-marine hydrothermal vents were active: ~400 °C acidic springs, whose effluents bore vast quantities of iron into the ocean, and ~120 °C, highly alkaline, and reduced vents exhaling from the cooler, serpentinizing crust some distance from the heads of the plumes. When encountering the alkaline effluents, the iron from the plume head vents precipitated out, forming mounds likely surrounded by voluminous exhalative deposits similar to the banded iron formations known from the Archean. These mounds and the surrounding sediments, comprised micro or nano-crysts of the variable valence FeII/FeIII oxyhydroxide known as green rust. The precipitation of green rust, along with subsidiary iron sulfides and minor concentrations of nickel, cobalt, and molybdenum in the environment at the alkaline springs, may have established both the key bio-syntonic disequilibria and the means to properly make use of them—the elements needed to effect the essential inanimate-to-animate transitions that launched life. Specifically, in the submarine alkaline vent model for the emergence of life, it is first suggested that the redox-flexible green rust micro- and nano-crysts spontaneously precipitated to form barriers to the complete mixing of carbonic ocean and alkaline hydrothermal fluids. These barriers created and maintained steep ionic disequilibria. Second, the hydrous interlayers of green rust acted as engines that were powered by those ionic disequilibria and drove essential endergonic reactions. There, aided by sulfides and trace elements acting as catalytic promoters and electron transfer agents, nitrate could be reduced to ammonia and carbon dioxide to formate, while methane may have been oxidized to methyl and formyl groups. Acetate and higher carboxylic acids could then have been produced from these C1 molecules and aminated to amino acids, and thence oligomerized to offer peptide nests to phosphate and iron sulfides, and secreted to form primitive amyloid-bounded structures, leading conceivably to protocells. Full article
(This article belongs to the Special Issue Geochemistry and the Origin of Life)
Show Figures

Graphical abstract

17 pages, 4332 KB  
Article
Insights into Extinct Seafloor Massive Sulfide Mounds at the TAG, Mid-Atlantic Ridge
by Berit Lehrmann, Iain J. Stobbs, Paul A.J. Lusty and Bramley J. Murton
Minerals 2018, 8(7), 302; https://doi.org/10.3390/min8070302 - 18 Jul 2018
Cited by 16 | Viewed by 7790
Abstract
Over the last decade there has been an increasing interest in deep-sea mineral resources that may contribute to future raw metal supply. However, before seafloor massive sulfides (SMS) can be considered as a resource, alteration and weathering processes that may affect their metal [...] Read more.
Over the last decade there has been an increasing interest in deep-sea mineral resources that may contribute to future raw metal supply. However, before seafloor massive sulfides (SMS) can be considered as a resource, alteration and weathering processes that may affect their metal tenor have to be fully understood. This knowledge cannot be obtained by assessing the surface exposures alone. Seafloor drilling is required to gain information about the third dimension. In 2016, three extinct seafloor massive sulfide mounds, located in the Trans-Atlantic Geotraverse (TAG) hydrothermal area of the Mid-Atlantic Ridge were drilled. A mineralogical and textural comparison of drill core and surface-grab samples revealed that in recent ceased mounds high-temperature copper assemblages typical for black smoker chimneys are still present whereas in longer extinct mounds the mineralogy is pre-dominated by an iron mineral assemblage. Zinc becomes remobilized early in the mound evolution and forms either a layer in the upper part of the mound or has been totally leached from its interior. Precipitation temperatures of sphalerite calculated using the Fe/Zn ratio can help to identify these remobilization processes. While the Fe/Zn ratios of primary sphalerites yield temperatures that are in very good agreement with fluid temperatures measured in white smokers, calculated temperatures for sphalerites affected by remobilization are too high for SMS. Overall drilling of SMS provides valuable information on the internal structure and mineralogy of the shallow sub-surface, however, additional drilling of SMS, at a greater depth, is required to fully understand the processes affecting SMS and their economic potential. Full article
(This article belongs to the Special Issue Deep-Sea Minerals and Gas Hydrates)
Show Figures

Figure 1

22 pages, 5613 KB  
Article
Shape and Size Complexity of Deep Seafloor Mounds on the Canary Basin (West to Canary Islands, Eastern Atlantic): A DEM-Based Geomorphometric Analysis of Domes and Volcanoes
by Olga Sánchez-Guillamón, Luis Miguel Fernández-Salas, Juan-Tomás Vázquez, Desirée Palomino, Teresa Medialdea, Nieves López-González, Luis Somoza and Ricardo León
Geosciences 2018, 8(2), 37; https://doi.org/10.3390/geosciences8020037 - 23 Jan 2018
Cited by 19 | Viewed by 6231
Abstract
Derived digital elevation models (DEMs) are high-resolution acoustic technology that has proven to be a crucial morphometric data source for research into submarine environments. We present a morphometric analysis of forty deep seafloor edifices located to the west of Canary Islands, using a [...] Read more.
Derived digital elevation models (DEMs) are high-resolution acoustic technology that has proven to be a crucial morphometric data source for research into submarine environments. We present a morphometric analysis of forty deep seafloor edifices located to the west of Canary Islands, using a 150 m resolution bathymetric DEM. These seafloor structures are characterized as hydrothermal domes and volcanic edifices, based on a previous study, and they are also morphostructurally categorized into five types of edifice following an earlier classification. Edifice outline contours were manually delineated and the morphometric variables quantifying slope, size and shape of the edifices were then calculated using ArcGIS Analyst tools. In addition, we performed a principal component analysis (PCA) where ten morphometric variables explain 84% of the total variance in edifice morphology. Most variables show a large spread and some overlap, with clear separations between the types of mounds. Based on these analyses, a morphometric growth model is proposed for both the hydrothermal domes and volcanic edifices. The model takes into account both the size and shape complexity of these seafloor structures. Grow occurs via two distinct pathways: the volcanoes predominantly grow upwards, becoming large cones, while the domes preferentially increase in volume through enlargement of the basal area. Full article
(This article belongs to the Special Issue Marine Geomorphometry)
Show Figures

Figure 1

18 pages, 317 KB  
Article
Functional Capabilities of the Earliest Peptides and the Emergence of Life
by E. James Milner-White and Michael J. Russell
Genes 2011, 2(4), 671-688; https://doi.org/10.3390/genes2040671 - 26 Sep 2011
Cited by 43 | Viewed by 9937
Abstract
Considering how biological macromolecules first evolved, probably within a marine environment, it seems likely the very earliest peptides were not encoded by nucleic acids, or at least not via the genetic code as we know it. An objective of the present work is [...] Read more.
Considering how biological macromolecules first evolved, probably within a marine environment, it seems likely the very earliest peptides were not encoded by nucleic acids, or at least not via the genetic code as we know it. An objective of the present work is to demonstrate that sequence-independent peptides, or peptides with variable and unreliable lengths and sequences, have the potential to perform a variety of chemically useful functions such as anion and cation binding and membrane and channel formation as well as simple types of catalysis. These functions tend to be performed with the assistance of the main chain CONH atoms rather than the more variable or limited side chain atoms of the peptides presumed to exist then. Full article
(This article belongs to the Special Issue Evolution and Structure of Proteins and Proteomes 2011)
Show Figures

Back to TopTop