Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hydromechanical destruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4730 KiB  
Article
Effects of Expansive Clay Content on the Hydromechanical Behavior of Liners Under Freeze-Thaw Conditions
by Ahmed M. Al-Mahbashi and Muawia Dafalla
Minerals 2025, 15(3), 291; https://doi.org/10.3390/min15030291 - 12 Mar 2025
Cited by 1 | Viewed by 796
Abstract
In several geotechnical and geoenvironmental projects, fines containing expandable clay minerals such as expansive clay (EC) were added to sand as sealing materials to form liners or hydraulic barriers. Liner layers are generally exposed to different climatic conditions such as freeze-thaw (FT) during [...] Read more.
In several geotechnical and geoenvironmental projects, fines containing expandable clay minerals such as expansive clay (EC) were added to sand as sealing materials to form liners or hydraulic barriers. Liner layers are generally exposed to different climatic conditions such as freeze-thaw (FT) during their service lifetime. The hydromechanical behavior of these layers under such circumstances is of great significance. In this study, the impact of fine contents of expansive soil on swelling, consolidation characteristics, and hydraulic conductivity under FT conditions is examined. Different clay liners with 20%, 30%, and 60% of EC content were designed. The specimens were initially subjected to successive FT cycles up to 15 in close system criteria. The results revealed that volumetric strains attained during successive FT cycles are proportional to the content and nature of expanding minerals (i.e., montmorillonite) and reached a 4.5% magnitude value for the liner with 60% clay. Vertical strains during wetting conditions have been reduced by about 90% after the first FT cycles, which implies significant destruction in the soil structure. The yield stress indicated a 60% change, along with increasing FT cycles. The hydraulic conductivity during an extended period of 100 days shows significant changes and deterioration due to FT actions. The outcome of this study will help to predict the lifetime behavior and performance of the liner, taking into account the stability under frost conditions. Full article
Show Figures

Figure 1

19 pages, 5981 KiB  
Article
Numerical Simulation and Characterization of the Hydromechanical Alterations at the Zafarraya Fault Due to the 1884 Andalusia Earthquake (Spain)
by Manuel Mudarra-Hernández, Juan Carlos Mosquera-Feijoo and Eugenio Sanz-Pérez
Water 2023, 15(5), 850; https://doi.org/10.3390/w15050850 - 22 Feb 2023
Cited by 2 | Viewed by 2455
Abstract
The 1884 Andalusia Earthquake, with an estimated magnitude between 6.2 and 6.7, is one of the most destructive events that shook the Iberian Peninsula, causing around 1200 casualties. According to paleoseismology studies and intensity maps, the earthquake source relates to the normal Ventas [...] Read more.
The 1884 Andalusia Earthquake, with an estimated magnitude between 6.2 and 6.7, is one of the most destructive events that shook the Iberian Peninsula, causing around 1200 casualties. According to paleoseismology studies and intensity maps, the earthquake source relates to the normal Ventas de Zafarraya Fault (Granada, Spain). Diverse studies registered and later analyzed hydrological effects, such as landslides, rockfalls, soil liquefaction, all-around surge and loss of springs, alterations in the phreatic level, discharge in springs and brooks and well levels, along with changes in physical and chemical parameters of groundwater. Further insight into these phenomena found an interplay between hydromechanical processes and crust surface deformations, conditions, and properties. This study focuses on analyzing and simulating the features involved in the major 1884 event and aims at elucidating the mechanisms concerning the mentioned effects. This ex-post analysis builds on the qualitative effects and visible alterations registered by historical studies. It encompasses conceptual geological and kinematic models and a 2D finite element simulation to account for the processes undergone by the Zafarraya Fault. The study focuses on the variability of hydromechanical features and the time evolution of the ground pore–pressure distribution in both the preseismic and coseismic stages, matching some of the shreds of evidence found by field studies. This procedure has helped to shed light on the causal mechanisms and better understand some parameters of this historical earthquake, such as its hypocenter and magnitude. This methodology can be applied to other events registered in the National Catalogues of Earthquakes to achieve a deeper insight, further knowledge, and a better understanding of past earthquakes. Full article
(This article belongs to the Special Issue How Earthquakes Affect Groundwater)
Show Figures

Figure 1

16 pages, 4098 KiB  
Article
Development of Technology for Hydromechanical Breakdown of Mud Plugs and Improvement of Well Cleaning by Controlled Buckling of the Drill String
by Viacheslav G. Kadochnikov and Mikhail V. Dvoynikov
Appl. Sci. 2022, 12(13), 6460; https://doi.org/10.3390/app12136460 - 25 Jun 2022
Cited by 16 | Viewed by 2701
Abstract
The article provides brief information about a non-standard experimental setup developed in the laboratory of the St. Petersburg Mining University Well Drilling Department. The developed technique presented makes it possible to simulate well cleaning process of cuttings by incorporating the variation of the [...] Read more.
The article provides brief information about a non-standard experimental setup developed in the laboratory of the St. Petersburg Mining University Well Drilling Department. The developed technique presented makes it possible to simulate well cleaning process of cuttings by incorporating the variation of the parameters (the zenith angle of the well, the volume flow and rheological properties of the cleaning agent, the rotation frequency, the number and length of the drill string half-waves) that cause buckling. For the first time, the positive side of the drill string (DS) buckling phenomenon is considered. A positive hydro-mechanical effect on mud plugs and improved well cleaning were revealed. The results of the experimental study confirm an intense difficulty in transporting cuttings to the surface at a critical zenith angle of the well of 55°. Regularities have been established making it possible to determine the effect of DS buckling on the cutting-carrying capacity when drilling deviated and extended reach wells. It is proposed to use hydromechanical impact on the accumulated cuttings by artificially controlling the resulting DS buckling in order to destroy the mud plug and increase the efficiency of well cleaning without the use of specialized devices. A conceptual solution aimed at implementing a method for hydromechanical destruction of mud plugs—the use of drill pipes equipped with a quasi-distributed differential measuring system of strain gauges based on a fiber-optic Bragg grating—is presented. Full article
(This article belongs to the Special Issue Renewable Energy Systems 2023)
Show Figures

Figure 1

17 pages, 2153 KiB  
Technical Note
Development of a Multimode Field Deployable Lidar Instrument for Topographic Measurements of Unsaturated Soil Properties: Instrument Description
by Sean E. Salazar, Cyrus D. Garner and Richard A. Coffman
Remote Sens. 2019, 11(3), 289; https://doi.org/10.3390/rs11030289 - 1 Feb 2019
Cited by 5 | Viewed by 5490
Abstract
The hydrological and mechanical behavior of soil is determined by the moisture content, soil water (matric) potential, fines content, and plasticity. However, these parameters are often difficult or impractical to determine in the field. Remote characterization of soil parameters is a non-destructive data [...] Read more.
The hydrological and mechanical behavior of soil is determined by the moisture content, soil water (matric) potential, fines content, and plasticity. However, these parameters are often difficult or impractical to determine in the field. Remote characterization of soil parameters is a non-destructive data collection process well suited to large or otherwise inaccessible areas. A ground-based, field-deployable remote sensor, called the soil observation laser absorption spectrometer (SOLAS), was developed to collect measurements from the surface of bare soils and to assess the in-situ condition and essential parameters of the soil. The SOLAS instrument transmits coherent light at two wavelengths using two, continuous-wave, near-infrared diode lasers and the instrument receives backscattered light through a co-axial 203-mm diameter telescope aperture. The received light is split into a hyperspectral sensing channel and a laser absorption spectrometry (LAS) channel via a multi-channel optical receiver. The hyperspectral channel detects light in the visible to shortwave infrared wavelengths, while the LAS channel filters and directs near-infrared light into a pair of photodetectors. Atmospheric water vapor is inferred using the differential absorption of the on- and off-line laser wavelengths (823.20 nm and 847.00 nm, respectively). Range measurement is determined using a frequency-modulated, self-chirped, coherent, homodyne detection scheme. The development of the instrument (transmitter, receiver, data acquisition components) is described herein. The potential for rapid characterization of physical and hydro-mechanical soil properties, including volumetric water content, matric potential, fines content, and plasticity, using the SOLAS remote sensor is discussed. The envisioned applications for the instrument include assessing soils on unstable slopes, such as wildfire burn sites, or stacked mine tailings. Through the combination of spectroradiometry, differential absorption, and range altimetry methodologies, the SOLAS instrument is a novel approach to ground-based remote sensing of the natural environment. Full article
(This article belongs to the Special Issue Remote Sensing of Regional Soil Moisture)
Show Figures

Graphical abstract

Back to TopTop