Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = hydrated ionic liquids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6155 KiB  
Article
Oxometallate-Based Ionic Liquid Catalyzed CO2-Promoted Hydration of Propargylic Alcohols for α-Hydroxy Ketones Synthesis
by Yuankun Wang, Chongli Wang, Weidong Lin, Qin Wang, Baisong Li, Cheng Chen, Ye Yuan and Francis Verpoort
Int. J. Mol. Sci. 2025, 26(1), 62; https://doi.org/10.3390/ijms26010062 - 25 Dec 2024
Viewed by 785
Abstract
α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO2-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze [...] Read more.
α-Hydroxy ketones are a crucial class of organic compounds prevalent in natural products and pharmaceutical molecules. The CO2-promoted hydration of propargylic alcohols is an efficient method for the synthesis of α-hydroxy ketones. Herein, an ionic liquid (IL) was designed to catalyze this reaction individually under atmospheric CO2 pressure, volatile organic solvents, and additives. This IL, constructed from the molybdate anion, can be recycled from industrial (NH4)2MoO4 production wastewater, demonstrating its high tolerance to catalytic environments and significant potential for practical applications. To our knowledge, this is the first instance of an oxometallate-based IL catalyst being utilized for the CO2-promoted hydration of propargylic alcohols. Further mechanistic studies revealed the bifunctionality of this IL in activating both CO2 and substrates. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of the Task-Specific Molecules)
Show Figures

Graphical abstract

44 pages, 6181 KiB  
Review
In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate
by Jianxing Song
Int. J. Mol. Sci. 2024, 25(23), 12817; https://doi.org/10.3390/ijms252312817 - 28 Nov 2024
Cited by 1 | Viewed by 1610
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out [...] Read more.
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid–liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments? Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 2675 KiB  
Article
Gold-Catalyzed Propargylic Substitution Followed by Cycloisomerization in Ionic Liquid: Environmentally Friendly Synthesis of Polysubstituted Furans from Propargylic Alcohols and 1,3-Dicarbonyl Compounds
by Hitomi Chiaki, Yoshimitsu Hashimoto and Nobuyoshi Morita
Molecules 2024, 29(22), 5441; https://doi.org/10.3390/molecules29225441 - 18 Nov 2024
Viewed by 958
Abstract
Gold-catalyzed propargylic substitution of propargylic alcohols 1 with 1,3-dicarbonyl compounds 2 followed by cycloisomerization in ionic liquid enables the environmentally friendly synthesis of polysubstituted furans 3 in good-to-high yields. The reaction proceeds via the hydrated propargylic substitution product 3″aa. The gold catalyst [...] Read more.
Gold-catalyzed propargylic substitution of propargylic alcohols 1 with 1,3-dicarbonyl compounds 2 followed by cycloisomerization in ionic liquid enables the environmentally friendly synthesis of polysubstituted furans 3 in good-to-high yields. The reaction proceeds via the hydrated propargylic substitution product 3″aa. The gold catalyst can be recycled at least three times. Full article
(This article belongs to the Special Issue New Metal Catalysts for Sustainable Chemistry)
Show Figures

Graphical abstract

14 pages, 4559 KiB  
Article
Aqueous Solution of Ionic Liquid Is an Efficient Substituting Solvent System for the Extraction of Alginate from Sargassum tenerrimum
by Kinjal Moradiya, Matheus M. Pereira and Kamalesh Prasad
Sustain. Chem. 2024, 5(2), 116-129; https://doi.org/10.3390/suschem5020009 - 11 May 2024
Cited by 1 | Viewed by 2269
Abstract
Three ionic liquids (ILs) and three deep eutectic solvents (DESs) with identical counterparts, as well as their aqueous solutions, were prepared for the selective extraction of alginate from Sargassum tenerrimum, a brown seaweed. It was found that the ILs and their hydrated [...] Read more.
Three ionic liquids (ILs) and three deep eutectic solvents (DESs) with identical counterparts, as well as their aqueous solutions, were prepared for the selective extraction of alginate from Sargassum tenerrimum, a brown seaweed. It was found that the ILs and their hydrated systems were only able to extract alginate from the seaweed directly, while the DESs were not, as confirmed by molecular docking studies. When the quality of the polysaccharide was compared to that produced using the hydrated IL system with the widely used conventional method, it was discovered that the physicochemical and rheological characteristics of the alginate produced using the ILs as solvents were on par with those produced using the conventional method. The ILs can be seen as acceptable alternative solvents for the simple extraction of the polysaccharide straight from the seaweed given the consistency of the extraction procedure used in conventional extraction processes. The hydrated ILs were discovered to be more effective than their non-hydrated counterparts. The yield was also maximized up to 54%, which is much more than that obtained using a traditional approach. Moreover, the ionic liquids can also be recovered and reused for the extraction process. Additionally, any residual material remaining after the extraction process was converted into cellulose, making the process environmentally friendly and sustainable. Full article
Show Figures

Figure 1

16 pages, 9653 KiB  
Article
[SBP]BF4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface
by Xingyun Zhang, Kailimai Su, Yue Hu, Kaiyuan Xue, Yan Wang, Minmin Han and Junwei Lang
Batteries 2024, 10(3), 102; https://doi.org/10.3390/batteries10030102 - 14 Mar 2024
Cited by 1 | Viewed by 2564
Abstract
The zinc anode mainly faces technical problems such as short circuits caused by the growth of dendrite, low coulomb efficiency, and a short cycle life caused by side reactions, which impedes the rapid development of aqueous zinc-ion batteries (AZIBs). Herein, a common ionic [...] Read more.
The zinc anode mainly faces technical problems such as short circuits caused by the growth of dendrite, low coulomb efficiency, and a short cycle life caused by side reactions, which impedes the rapid development of aqueous zinc-ion batteries (AZIBs). Herein, a common ionic liquid, 1,1-Spirobipyrrolidinium tetrafluoroborate ([SBP]BF4), is selected as a new additive for pure ZnSO4 electrolyte. It is found that this additive could regulate the solvation sheath of hydrated Zn2+ ions, promote the ionic mobility of Zn2+, homogenize the flux of Zn2+, avoid side reactions between the electrolyte and electrode, and inhibit the production of zinc dendrites by facilitating the establishment of an inorganic solid electrolyte interphase layer. With the 1% [SBP]BF4-modified electrolyte, the Zn||Zn symmetric cell delivers an extended plating/stripping cycling life of 2000 h at 1 mA cm−2, which is much higher than that of the cell without additives (330 h). As a proof of concept, the Zn‖V2O5 battery using the [SBP]BF4 additive shows excellent cycling stability, maintaining its specific capacity at 97 mAh g−1 after 2000 cycles at 5 A g−1, which is much greater than the 46 mAh g−1 capacity of the non-additive battery. This study offers zinc anode stabilization through high-efficiency electrolyte engineering. Full article
Show Figures

Figure 1

14 pages, 9055 KiB  
Article
Multifunctional Biomass-Based Ionic Liquids/CuCl-Catalyzed CO2-Promoted Hydration of Propargylic Alcohols: A Green Synthesis of α-Hydroxy Ketones
by Ye Yuan, Siqi Zhang, Kang Duan, Yong Xu, Kaixuan Guo, Cheng Chen, Somboon Chaemchuen, Dongfeng Cao and Francis Verpoort
Int. J. Mol. Sci. 2024, 25(3), 1937; https://doi.org/10.3390/ijms25031937 - 5 Feb 2024
Cited by 3 | Viewed by 1930
Abstract
α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in [...] Read more.
α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions and the undesired side reaction of Meyer–Schuster rearrangement. In this study, CO2-promoted hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones. Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids utilized in this system are derived from natural biomass materials, which exhibited recyclability and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives. Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of environmental sustainability. Further mechanistic investigation attributed the excellent performance to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and the Cu component. Full article
Show Figures

Graphical abstract

15 pages, 6110 KiB  
Article
Preparation and Performance Evaluation of Ionic Liquid Copolymer Shale Inhibitor for Drilling Fluid Gel System
by Zhiwen Dai, Jinsheng Sun, Zhuoyang Xiu, Xianbin Huang, Kaihe Lv, Jingping Liu, Yuanwei Sun and Xiaodong Dong
Gels 2024, 10(2), 96; https://doi.org/10.3390/gels10020096 - 26 Jan 2024
Cited by 2 | Viewed by 1916
Abstract
An inhibitor that can effectively inhibit shale hydration is necessary for the safe and efficient development of shale gas. In this study, a novel ionic liquid copolymer shale inhibitor (PIL) was prepared by polymerizing the ionic liquid monomers 1-vinyl-3-aminopropylimidazolium bromide, acrylamide, and methacryloyloxyethyl [...] Read more.
An inhibitor that can effectively inhibit shale hydration is necessary for the safe and efficient development of shale gas. In this study, a novel ionic liquid copolymer shale inhibitor (PIL) was prepared by polymerizing the ionic liquid monomers 1-vinyl-3-aminopropylimidazolium bromide, acrylamide, and methacryloyloxyethyl trimethyl ammonium chloride. The chemical structure was characterized using fourier transform infrared spectroscopy (FT-IR) and hydrogen-nuclear magnetic resonance (H-NMR), and the inhibition performance was evaluated using the inhibition of slurrying test, bentonite flocculation test, linear expansion test, and rolling recovery test. The experimental results showed that bentonite had a linear expansion of 27.9% in 1 wt% PIL solution, 18% lower than that in the polyether amine inhibitor. The recovery rate of shale in 1 wt% PIL was 87.4%. The ionic liquid copolymer could work synergistically with the filtrate reducer, reducing filtration loss to 7.2 mL with the addition of 1%. Mechanism analysis showed that PIL adsorbed negatively charged clay particles through cationic groups, which reduced the electrostatic repulsion between particles. Thus, the stability of the bentonite gel systems was destroyed, and the hydration dispersion and expansion of bentonite were inhibited. PIL formed a hydrophobic film on the surface of clay and prevented water from entering into the interlayer of clay. In addition, PIL lowered the surface tension of water, which prevented the water from intruding into the rock under the action of capillary force. These are also the reasons for the superior suppression performance of PIL. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery (2nd Edition))
Show Figures

Graphical abstract

28 pages, 16513 KiB  
Article
Thermokinetic and Chemorheology of the Geopolymerization of an Alumina-Rich Alkaline-Activated Metakaolin in Isothermal and Dynamic Thermal Scans
by Raffaella Aversa, Laura Ricciotti, Valeria Perrotta and Antonio Apicella
Polymers 2024, 16(2), 211; https://doi.org/10.3390/polym16020211 - 11 Jan 2024
Cited by 2 | Viewed by 1444
Abstract
Alkaline sodium hydroxide/sodium silicate-activating high-purity metakaolin geopolymerization is described in terms of metakaolin deconstruction in tetrahedral hydrate silicate [O[Si(OH)3]] and aluminate [Al(OH)4] ionic precursors followed by their reassembling in linear and branched sialates monomers that randomly copolymerize [...] Read more.
Alkaline sodium hydroxide/sodium silicate-activating high-purity metakaolin geopolymerization is described in terms of metakaolin deconstruction in tetrahedral hydrate silicate [O[Si(OH)3]] and aluminate [Al(OH)4] ionic precursors followed by their reassembling in linear and branched sialates monomers that randomly copolymerize into an irregular crosslinked aluminosilicate network. The novelty of the approach resides in the concurrent thermo-calorimetric (differential scanning calorimetry, DSC) and rheological (dynamic mechanical analysis, DMA) characterizations of the liquid slurry during the transformation into a gel and a structural glassy solid. Tests were run either in temperature scan (1 °C/min) or isothermal (20 °C, 30 °C, 40 °C) cure conditions. A Gaussian functions deconvolution method has been applied to the DSC multi-peak thermograms to separate the kinetic contributions of the oligomer’s concurrent reactions. DSC thermograms of all tested materials are well-fitted by a combination of three overlapping Gaussian curves that are associated with the initial linear low-molecular-weight (Mw) oligomers (P1) formation, oligomers branching into alumina-rich and silica-rich gels (P2), and inter- and intra-molecular crosslinking (P3). The loss factor has been used to define viscoelastic behavioral zones for each DMA rheo-thermogram operated in the same DSC thermal conditions. Macromolecular evolution and viscoelastic properties have been obtained by pairing the deconvoluted DSC thermograms with the viscoelastic behavioral zones of the DMA rheo-thermograms. Two main chemorheological behaviors have been identified relative to pre- and post-gelation separation of the viscoelastic liquid from the viscoelastic solid. Each comprises three behavioral zones, accounting for the concurrently occurring linear and branching oligomerization, aluminate-rich and silica-rich gel nucleations, crosslinking, and vitrification. A “rubbery plateau” in the loss factor path, observed for all the testing conditions, identifies a large behavioral transition zone dividing the incipient gelling liquid slurry from the material hard setting and vitrification. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

14 pages, 1957 KiB  
Article
The Uptake of Actinides by Hardened Cement Paste in High-Salinity Pore Water
by Janina Stietz, Samer Amayri, Verena Häußler, Raphael Scholze and Tobias Reich
Minerals 2023, 13(11), 1380; https://doi.org/10.3390/min13111380 - 28 Oct 2023
Cited by 2 | Viewed by 1512
Abstract
The interaction of the actinides Pu(III), Am(III), Np(V), Np(VI), and U(VI) with hardened cement paste (HCP) prepared from ordinary Portland cement was investigated by batch experiments in a diluted caprock solution (I = 2.5 M) as a function of the solid-to-liquid (S/L) ratio [...] Read more.
The interaction of the actinides Pu(III), Am(III), Np(V), Np(VI), and U(VI) with hardened cement paste (HCP) prepared from ordinary Portland cement was investigated by batch experiments in a diluted caprock solution (I = 2.5 M) as a function of the solid-to-liquid (S/L) ratio (0.5–20.0 g L−1) and pH (10–13). Independent of the oxidation state of the actinides, strong sorption was observed with Rd values between 104 and 5 × 105 L kg−1. For the hexavalent actinides U(VI) and Np(VI), a decrease in sorption was observed with increasing pH, which could be due to the formation of the AnO2(OH)42− species. CE-ICP-MS measurements of the supernatant solution from the U(VI) batch sorption experiment at pH ≥ 10 indicate that UO2(OH)3 and UO2(OH)42− dominate the speciation. Pu LIII-edge XANES and EXAFS measurements showed oxidation of Pu(III) to Pu(IV) when interacting with HCP. Calcium silicate hydrate (C-S-H) phases effectively immobilize Pu(IV) by incorporating it into the CaO layer. This was observed in a C-S-H sample with C/S = 1.65 and HCP at pH 12.7. Compared to data published in the literature on the retention of actinides on HCP at low ionic strength, the influence of high ionic strength (I = 2.5 M) on the sorption behavior was insignificant. Full article
Show Figures

Figure 1

16 pages, 4851 KiB  
Article
Adsorption of Sc on the Surface of Kaolinite (001): A Density Functional Theory Study
by Zilong Zhao, Kaiyu Wang, Guoyuan Wu, Dengbang Jiang and Yaozhong Lan
Materials 2023, 16(15), 5349; https://doi.org/10.3390/ma16155349 - 29 Jul 2023
Cited by 2 | Viewed by 1759
Abstract
The adsorption behavior of Sc on the surface of kaolinite (001) was investigated using the density functional theory via the generalized gradient approximation plane-wave pseudopotential method. The highest coordination numbers of hydrated Sc3+,  ScOH2+, and [...] Read more.
The adsorption behavior of Sc on the surface of kaolinite (001) was investigated using the density functional theory via the generalized gradient approximation plane-wave pseudopotential method. The highest coordination numbers of hydrated Sc3+,  ScOH2+, and  ScOH2 + species are eight, six, and five, respectively. The adsorption model was based on ScOH2H2O5+, which has the most stable ionic configuration in the liquid phase. According to the adsorption energy and bonding mechanism, the adsorption of Sc ionic species can be categorized into outer layer and inner layer adsorptions. We found that the hydrated Sc ions were mainly adsorbed on the outer layer of the kaolinite (001)Al-OH and (00−1)Si-O surfaces through hydrogen bonding while also being adsorbed on the inner layer of the deprotonated kaolinite (001)Al-OH surface through coordination bonding. The inner layer adsorption has three adsorption configurations, with the lying hydroxyl group (Ol) position having the lowest adsorption energy (−653.32 KJ/mol). The adsorption energy for the inner layer is lower compared to the outer layer, while the extent of deprotonation is limited. This is because the deprotonation of the inner adsorption layer is energetically unfavorable. We speculate that Sc ions species predominantly adsorb onto the surface of kaolinite (001) in an outer layer configuration. Full article
(This article belongs to the Special Issue Recovery of Non-ferrous Metal from Metallurgical Residues)
Show Figures

Figure 1

16 pages, 2214 KiB  
Article
Bicontinuous Cubic Liquid Crystals as Potential Matrices for Non-Invasive Topical Sampling of Low-Molecular-Weight Biomarkers
by Maxim Morin, Sebastian Björklund, Emelie J. Nilsson and Johan Engblom
Pharmaceutics 2023, 15(8), 2031; https://doi.org/10.3390/pharmaceutics15082031 - 28 Jul 2023
Cited by 1 | Viewed by 1729
Abstract
Many skin disorders, including cancer, have inflammatory components. The non-invasive detection of related biomarkers could therefore be highly valuable for both diagnosis and follow up on the effect of treatment. This study targets the extraction of tryptophan (Trp) and its metabolite kynurenine (Kyn), [...] Read more.
Many skin disorders, including cancer, have inflammatory components. The non-invasive detection of related biomarkers could therefore be highly valuable for both diagnosis and follow up on the effect of treatment. This study targets the extraction of tryptophan (Trp) and its metabolite kynurenine (Kyn), two compounds associated with several inflammatory skin disorders. We furthermore hypothesize that lipid-based bicontinuous cubic liquid crystals could be efficient extraction matrices. They comprise a large interfacial area separating interconnected polar and apolar domains, allowing them to accommodate solutes with various properties. We concluded, using the extensively studied GMO-water system as test-platform, that the hydrophilic Kyn and Trp favored the cubic phase over water and revealed a preference for locating at the lipid–water interface. The interfacial area per unit volume of the matrix, as well as the incorporation of ionic molecules at the lipid–water interface, can be used to optimize the extraction of solutes with specific physicochemical characteristics. We also observed that the cubic phases formed at rather extreme water activities (>0.9) and that wearing them resulted in efficient hydration and increased permeability of the skin. Evidently, bicontinuous cubic liquid crystals constitute a promising and versatile platform for non-invasive extraction of biomarkers through skin, as well as for transdermal drug delivery. Full article
Show Figures

Figure 1

17 pages, 6020 KiB  
Article
Eco-Friendly Drilling Fluid: Calcium Chloride-Based Natural Deep Eutectic Solvent (NADES) as an All-Rounder Additive
by Muhammad Hammad Rasool, Maqsood Ahmad, Numair Ahmed Siddiqui and Aisha Zahid Junejo
Energies 2023, 16(14), 5533; https://doi.org/10.3390/en16145533 - 21 Jul 2023
Cited by 8 | Viewed by 2742
Abstract
Designing an effective drilling mud is a critical aspect of the drilling process. A well-designed drilling mud should not only provide efficient mud hydraulics but also fulfill three important functions: enhancing mud rheology, inhibiting hydrate formation in deepwater drilling, and suppressing shale swelling [...] Read more.
Designing an effective drilling mud is a critical aspect of the drilling process. A well-designed drilling mud should not only provide efficient mud hydraulics but also fulfill three important functions: enhancing mud rheology, inhibiting hydrate formation in deepwater drilling, and suppressing shale swelling when drilling through shale formations. Achieving these functions often requires the use of various additives, but these additives are often expensive, non-biodegradable, and have significant environmental impacts. To address these concerns, researchers have explored the potential applications of ionic liquids and deep eutectic solvents in drilling mud design, which have shown promising results. However, an even more environmentally friendly alternative has emerged in the form of natural deep eutectic solvents (NADES). This research focuses on an in-house-prepared NADES based on calcium chloride and glycerine, with a ratio of 1:4, prepared at 60 °C, and utilizes it as a drilling mud additive following the API 13 B-1 standards and checks its candidacy as a rheology modifier, hydrates, and shale inhibitor. The findings of the study demonstrate that the NADES-based mud significantly improves the overall yield point to plastic viscosity ratio (YP/PV) of the mud, provides good gel strength, and inhibits hydrate formation by up to 80%. Additionally, it has shown an impressive 62.8% inhibition of shale swelling while allowing for 84.1% improved shale recovery. Moreover, the NADES-based mud exhibits a 28% and 25% reduction in mud filtrate and mud cake thickness, respectively, which is further supported by the results of XRD, zeta potential, and surface tension. Based on these positive outcomes, the calcium chloride–glycerine NADES-based mud is recommended as a versatile drilling mud additive suitable for various industrial applications. Furthermore, it presents a more environmentally friendly option compared to traditional additives, addressing concerns about cost, biodegradability, and environmental impact in the drilling process for an ultimate global impact. Full article
Show Figures

Figure 1

13 pages, 5908 KiB  
Article
Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions
by Vladimir Vanik, Zuzana Bednarikova, Gabriela Fabriciova, Steven S.-S. Wang, Zuzana Gazova and Diana Fedunova
Int. J. Mol. Sci. 2023, 24(11), 9699; https://doi.org/10.3390/ijms24119699 - 2 Jun 2023
Cited by 4 | Viewed by 2060
Abstract
Amyloid fibrils have immense potential to become the basis of modern biomaterials. The formation of amyloid fibrils in vitro strongly depends on the solvent properties. Ionic liquids (ILs), alternative solvents with tunable properties, have been shown to modulate amyloid fibrillization. In this work, [...] Read more.
Amyloid fibrils have immense potential to become the basis of modern biomaterials. The formation of amyloid fibrils in vitro strongly depends on the solvent properties. Ionic liquids (ILs), alternative solvents with tunable properties, have been shown to modulate amyloid fibrillization. In this work, we studied the impact of five ILs with 1-ethyl-3-methylimidazolium cation [EMIM+] and anions of Hofmeisterseries hydrogen sulfate [HSO4], acetate [AC], chloride [Cl], nitrate [NO3], and tetrafluoroborate [BF4] on the kinetics of insulin fibrillization and morphology, and the structure of insulin fibrils when applying fluorescence spectroscopy, AFM and ATR-FTIR spectroscopy. We found that the studied ILs were able to speed up the fibrillization process in an anion- and IL-concentration-dependent manner. At an IL concentration of 100 mM, the efficiency of the anions at promoting insulin amyloid fibrillization followed the reverse Hofmeister series, indicating the direct binding of ions with the protein surface. At a concentration of 25 mM, fibrils with different morphologies were formed, yet with similar secondary structure content. Moreover, no correlation with the Hofmeister ranking was detected for kinetics parameters. IL with the kosmotropic strongly hydrated [HSO4] anion induced the formation of large amyloid fibril clusters, while the other kosmotropic anion [AC] along with [Cl] led to the formation of fibrils with similar needle-like morphologies to those formed in the IL-free solvent. The presence of the ILs with the chaotropic anions [NO3] and [BF4] resulted in longer laterally associated fibrils. The effect of the selected ILs was driven by a sensitive balance and interplay between specific protein–ion and ion–water interactions and non-specific long-range electrostatic shielding. Full article
(This article belongs to the Special Issue The Role of Environment in Amyloid Aggregation 2.0)
Show Figures

Figure 1

15 pages, 3855 KiB  
Article
Experimental Study on CH4 Hydrate Dissociation by the Injection of Hot Water, Brine, and Ionic Liquids
by Siting Wu, Xuebing Zhou, Jingsheng Lu, Deqing Liang and Dongliang Li
J. Mar. Sci. Eng. 2023, 11(4), 713; https://doi.org/10.3390/jmse11040713 - 26 Mar 2023
Cited by 2 | Viewed by 1836
Abstract
Thermal stimulation is an important method to promote gas production and to avoid secondary hydrate formation during hydrate exploitation, but low thermal efficiency hinders its application. In this work, hydrate dissociation was carried out in synthesized hydrate-bearing sediments with 30% hydrate saturation at [...] Read more.
Thermal stimulation is an important method to promote gas production and to avoid secondary hydrate formation during hydrate exploitation, but low thermal efficiency hinders its application. In this work, hydrate dissociation was carried out in synthesized hydrate-bearing sediments with 30% hydrate saturation at 6.9 MPa and 9 °C. Ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIM-Cl) and tetramethylammonium chloride (TMACl), were injected as heat carriers, and the promotion effects were compared with the injection of hot water and brine. The results showed that the injection of brine and ionic liquids can produce higher thermal efficiencies compared to hot water. Thermodynamic hydrate inhibitors, such as NaCl, BMIM-Cl, and TMACl, were found to impair the stability of CH4 hydrate, which was conducive to hydrate dissociation. By increasing the NaCl concentration from 3.5 to 20 wt%, the thermal efficiency increased from 37.6 to 44.0%, but the thermal efficiencies experienced a fall as the concentration of either BMIM-Cl or TMACl grew from 10 to 20 wt%. In addition, increasing the injection temperature from 30 to 50 °C was found to bring a sharp decrease in thermal efficiency, which was unfavorable for the economics of gas production. Suitable running conditions for ionic liquids injection should control the concentration of ionic liquids under 10 wt% and the injection temperature should be around 10 °C, which is conducive to exerting the weakening effect of ionic liquids on hydrate stability. Full article
Show Figures

Figure 1

18 pages, 9276 KiB  
Article
Mechanical Behavior of Hydrated-Lime–Liquid-Stabilizer-Treated Granular Lateritic Soils
by Kangwei Tang, Feng Zeng, Liang Shi, Long Zhu, Zining Chen and Feng Zhang
Sustainability 2023, 15(6), 5601; https://doi.org/10.3390/su15065601 - 22 Mar 2023
Cited by 5 | Viewed by 3006
Abstract
Granular lateritic soil is commonly used for road construction in humid tropical and subtropical regions. However, the high plastic clay content and poor particle distribution of some laterite materials make them unsuitable for bases and subbases. Lime treatment is a widely used method [...] Read more.
Granular lateritic soil is commonly used for road construction in humid tropical and subtropical regions. However, the high plastic clay content and poor particle distribution of some laterite materials make them unsuitable for bases and subbases. Lime treatment is a widely used method for improving problematic lateritic soil, and liquid ionic stabilizers are considered an environmentally friendly solution for reinforcing such soils. However, using only lime or only stabilizers may not be optimal. This study investigated the effect of treating granular lateritic soil with hydrated lime and a new liquid stabilizer, Zhonglu-2A (ZL-2A). A series of indoor tests, including compaction, California bearing ratio, and unconfined compressive strength tests, were conducted to evaluate the effects of hydrated lime content and stabilizer content on the mechanical properties, mineralogical composition, and microstructure of the soil. The results show that an increase in hydrated lime dosage increases the optimal moisture content and decreases the maximum dry density. The CBR of lime-stabilizer-treated laterite was at least 2–3 times higher than that of the only-lime-treated soil. The highest CBR was observed in samples treated with 0.2‰ ZL-2A stabilizer. The sample with 6% lime and 0.2‰ ZL-2A stabilizer exhibited the highest unconfined compressive strength, and a nearly linear increase was observed between the unconfined compressive strength and CBR. Further investigation of the stabilization mechanism using X-ray diffraction mineralogy analysis and scanning electron microscopy revealed that the inorganic substances of the ZL-2A stabilizer and the hydrated lime provided the basic conditions for the reaction and generated cementitious hydrates on the clay particles. The mixture of granular lateritic soil and hydrated lime was wrapped by the ZL-2A stabilizer, forming a complex spatial structure and improving the strength of the soil. To improve the bearing capacity of subgrades in actual subgrade engineering, a combination of a liquid ionic stabilizer and lime should be used to treat laterite. Full article
Show Figures

Figure 1

Back to TopTop