Adsorption of Sc on the Surface of Kaolinite (001): A Density Functional Theory Study
Abstract
:1. Introduction
2. Theoretical Methods and Models
2.1. Calculation Methods and Parameters
2.2. Construction of Computational Models
3. Results and Discussion
3.1. Geometric Configuration of
3.2. Outer Layer Adsorption of on the (001)Al-OH Surface
3.3. Adsorption of on the Outer Layer of the (00−1)Si-O Surface
3.4. Inner Layer Adsorption on the (001)Al-OH Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheisson, T.; Schelter, E.J. Rare earth elements: Mendeleev’s bane, modern marvels. Science 2019, 363, 489–493. [Google Scholar] [CrossRef]
- Omodara, L.; Pitkäaho, S.; Turpeinen, E.-M.; Saavalainen, P.; Oravisjärvi, K.; Keiski, R.L. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—A review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global demand for rare earth resources and strategies for green mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, Y.; Li, H.; Lee, J.-M.; Tang, Y.; Fu, G. Rare-Earth Single-Atom Catalysts: A New Frontier in Photo/Electrocatalysis. Small Methods 2022, 6, 2200413. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Xu, Y.; Zhang, Z.; Gao, Z.; Luo, M.; Yin, Z.; Zhang, C.; Xu, J.; Huang, B.; Luo, F.; et al. Rare-earth-containing perovskite nanomaterials: Design, synthesis, properties and applications. Chem. Soc. Rev. 2020, 49, 1109–1143. [Google Scholar] [CrossRef]
- Lincheng, X.; Yue, W.; Yong, Y.; Zhanzhong, H.; Xin, C.; Fan, L. Optimisation of the electronic structure by rare earth doping to enhance the bifunctional catalytic activity of perovskites. Appl. Energy 2023, 339, 120931. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Yu, Y.; Zhao, L.; Wang, C.; Feng, Z.; Cui, D.; Long, Z. Towards cleaner production of rare earth elements from bastnaesite in China. J. Clean. Prod. 2017, 165, 231–242. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Z.; Xu, Z.; Yu, J.; Zhang, Y.; Chi, R. Rare Earth Partitioning Characteristics of China Rare Earth Ore. Chin. Rare Earths 2016, 37, 121–127. [Google Scholar]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-de-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef]
- Ochsenkühn-Petropoulou, M.T.; Hatzilyberis, K.S.; Mendrinos, L.N.; Salmas, C.E. Pilot-Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud. Ind. Eng. Chem. Res. 2002, 41, 5794–5801. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy 2011, 108, 100–108. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.-X.; Liu, X.-M. Recovery of scandium from bauxite residue—Red mud: A review. Rare Met. 2016, 35, 887–900. [Google Scholar] [CrossRef]
- Qiu, S.; Yan, H.; Qiu, X.; Wu, H.; Zhou, X.; Wu, H.; Li, X.; Qiu, T. Adsorption of La on kaolinite (001) surface in aqueous system: A combined simulation with an experimental verification. J. Mol. Liq. 2022, 347, 117956. [Google Scholar] [CrossRef]
- Rudolph, W.W.; Irmer, G. On the Hydration of the Rare Earth Ions in Aqueous Solution. J. Solut. Chem. 2020, 49, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zheng, G.; Takahashi, Y.; Wu, C.; Zheng, C.; Yao, J.; Xiao, C. Extreme enrichment of rare earth elements in hard clay rocks and its potential as a resource. Ore Geol. Rev. 2016, 72, 191–212. [Google Scholar] [CrossRef]
- White, C.E.; Provis, J.L.; Proffen, T.; Riley, D.P.; van Deventer, J.S.J. Density Functional Modeling of the Local Structure of Kaolinite Subjected to Thermal Dehydroxylation. J. Phys. Chem. A 2010, 114, 4988–4996. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, X.-P.; Zhang, B.-H.; Wang, J. Adsorption of Zn(II) on the kaolinite(001) surfaces in aqueous environment: A combined DFT and molecular dynamics study. Appl. Surf. Sci. 2017, 414, 405–412. [Google Scholar] [CrossRef]
- Wu, H.; Yan, H.; Zhao, G.; Qiu, S.; Qiu, X.; Zhou, X.; Qiu, T. Influence of impurities on adsorption of hydrated Y3+ ions on the kaolinite (001) surface. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129961. [Google Scholar] [CrossRef]
- Šolc, R.; Gerzabek, M.H.; Lischka, H.; Tunega, D. Wettability of kaolinite (001) surfaces—Molecular dynamic study. Geoderma 2011, 169, 47–54. [Google Scholar] [CrossRef]
- Chi, R.A.; Tian, J.; Luo, X.P.; Xu, Z.G.; He, Z.Y. The basic research on the weathered crust elution-deposited rare earth ores. Nonferrous Met. Sci. Eng. 2012, 3, 1–13. [Google Scholar]
- He, Z.; Zhang, Z.; Yu, J.; Zhou, F.; Xu, Y.; Xu, Z.; Chen, Z.; Chi, R. Kinetics of column leaching of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salt solutions. Hydrometallurgy 2016, 163, 33–39. [Google Scholar] [CrossRef]
- Zhao, L.-S.; Wang, L.-N.; Chen, D.-S.; Zhao, H.-X.; Liu, Y.-H.; Qi, T. Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Trans. Nonferrous Met. Soc. China 2015, 25, 1325–1333. [Google Scholar] [CrossRef]
- Wang, P.-P.; Qin, W.-Q.; Ren, L.-Y.; Wei, Q.; Liu, R.-Z.; Yang, C.-R.; Zhong, S.-P. Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite. Trans. Nonferrous Met. Soc. China 2013, 23, 1789–1796. [Google Scholar] [CrossRef]
- Wang, G.; Lai, Y.; Peng, C. Adsorption of rare earth yttrium and ammonium ions on kaolinite surfaces: A DFT study. Theor. Chem. Acc. 2018, 137, 53. [Google Scholar] [CrossRef]
- Long, P.; Wang, G.-S.; Tian, J.; Hu, S.-L.; Luo, S.-H. Simulation of one-dimensional column leaching of weathered crust elution-deposited rare earth ore. Trans. Nonferrous Met. Soc. China 2019, 29, 625–633. [Google Scholar] [CrossRef]
- Huang, H.; Qiu, T.; Ren, S.; Qiu, X. Research on flotation mechanism of wolframite activated by Pb(II) in neutral solution. Appl. Surf. Sci. 2020, 530, 147036. [Google Scholar] [CrossRef]
- Blanchard, M.; Wright, K.; Gale, J.D.; Catlow, C.R.A. Adsorption of As(OH)3 on the (001) Surface of FeS2 Pyrite: A Quantum-mechanical DFT Study. J. Phys. Chem. C 2007, 111, 11390–11396. [Google Scholar] [CrossRef]
- Wang, F.S.; Gao, Z.; Liu, S.G. Model of muti-pressure craft model based on transient liquid-phase bonding. J. Lanzhou Petrochem. Coll. Technol. 2008, 8, 25–27. [Google Scholar]
- Chen, G.; Li, X.; Zhou, L.; Xia, S.; Yu, L. Mechanism insights into Hg(II) adsorption on kaolinite(001) surface: A density functional study. Appl. Surf. Sci. 2019, 488, 494–502. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, H.; Yan, H.; Li, X.; Zhou, X.; Qiu, T. Theoretical investigation of hydrated [Lu(OH)2]+ adsorption on kaolinite(001) surface with DFT calculations. Appl. Surf. Sci. 2021, 565, 150473. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, Y.; Wang, G.; Min, F.; Qin, L. Atomic-level insights into the adsorption of rare earth Y(OH)3-nn+ (n = 1–3) ions on kaolinite surface. Appl. Surf. Sci. 2019, 469, 357–367. [Google Scholar] [CrossRef]
- Yan, H.; Yang, B.; Zhou, X.; Qiu, X.; Zhu, D.; Wu, H.; Li, M.; Long, Q.; Xia, Y.; Chen, J.; et al. Adsorption mechanism of hydrated Lu(OH)2+ and Al(OH)2+ ions on the surface of kaolinite. Powder Technol. 2022, 407, 117611. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.D.; Philip, J.D.L.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Bish, D.L. Rietveld refinement of the kaolinite structure at 1.5 K. Clays Clay Miner. 1993, 41, 738–744. [Google Scholar] [CrossRef]
- White, C.E.; Provis, J.L.; Riley, D.P.; Kearley, G.J.; van Deventer, J.S.J. What Is the Structure of Kaolinite? Reconciling Theory and Experiment. J. Phys. Chem. B 2009, 113, 6756–6765. [Google Scholar] [CrossRef] [PubMed]
- Neder, R.B.; Burghammer, M.; Grasl, T.H.; Schulz, H.; Bram, A.; Fiedler, S. Refinement of the Kaolinite Structure From Single-Crystal Synchrotron Data. Clays Clay Miner. 1999, 47, 487–494. [Google Scholar] [CrossRef]
- Qiu, T.; Qiu, S.; Wu, H.; Yan, H.; Li, X.; Zhou, X. Adsorption of hydrated [Y(OH)2]+ on kaolinite (001) surface: Insight from DFT simulation. Powder Technol. 2021, 387, 80–87. [Google Scholar] [CrossRef]
- Kremleva, A.; Krüger, S.; Rösch, N. Density Functional Model Studies of Uranyl Adsorption on (001) Surfaces of Kaolinite. Langmuir 2008, 24, 9515–9524. [Google Scholar] [CrossRef]
- Vasconcelos, I.F.; Bunker, B.A.; Cygan, R.T. Molecular Dynamics Modeling of Ion Adsorption to the Basal Surfaces of Kaolinite. J. Phys. Chem. C 2007, 111, 6753–6762. [Google Scholar] [CrossRef]
n a | /Å | /Å | /Å | Ebinding /KJ·mol−1 | Sc Charge /e |
---|---|---|---|---|---|
1 | 1.94309 | 1.94309 | 1.94309 | −709.44 | 2.52 |
2 | 2.20016 | 2.20044 | 2.2003 | −1208.64 | 2.3 |
3 | 2.03104 | 2.03233 | 2.03155 | −1607.04 | 2.19 |
4 | 2.06466 | 2.07317 | 2.06876 | −1935.36 | 2.13 |
5 | 2.08986 | 2.1409 | 2.11343 | −2184 | 2.08 |
6 | 2.13676 | 2.14966 | 2.14483 | −2404.8 | 2.07 |
7 | 2.17566 | 2.24127 | 2.20447 | −2528.64 | 2.04 |
8 | 2.18095 | 2.35703 | 2.26569 | −2629.44 | 2.03 |
Sample | R(Sc-Ow)min /Å | R(Sc-Ow)max /Å | R(Sc-Ow)avg /Å | Ebinding /KJ·mol−1 | Charge on Sc/e |
---|---|---|---|---|---|
1.85728 | 2.31498 | 2.21025 | −3180.48 | 1.77 | |
2.34878 | 2.34878 | 2.22228 | −3661.44 | 1.71 |
Name | State | N | R(Sc-Ow) /Å | R(Sc-Ow)avg /Å | Eads /KJ·mol−1 |
---|---|---|---|---|---|
Before | 7 | 1.90, 1.98, 2.30, 2.31,2.34, 2.35, 2.38 | 2.22 | −522.24 | |
After | 6 | 1.90, 2.02, 2.12, 2.22,2.26, 2.32 | 2.14 |
State | 3s | 3p | 3d | Total | Charge/e |
---|---|---|---|---|---|
Before adsorption | 2.14 | 5.94 | 1.21 | 9.29 | 1.71 |
After adsorption | 2.16 | 5.98 | 1.1 | 9.24 | 1.76 |
Δcharge a | 0.02 | 0.04 | −0.11 | −0.05 | 0.05 |
Name | State | N | R(Sc-Ow) /Å | R(Sc-Ow)avg /Å | Eads /KJ·mol−1 |
---|---|---|---|---|---|
Before | 7 | 1.90, 1.98, 2.30, 2.31, 2.34, 2.35, 2.38 | 2.22 | −648.96 | |
After | 6 | 1.95, 1.99, 2.19, 2.23, 2.29, 2.34 | 2.17 |
State | 3s | 3p | 3d | Total | Charge/e |
---|---|---|---|---|---|
Before adsorption | 2.14 | 5.94 | 1.21 | 9.29 | 1.71 |
After adsorption | 2.16 | 5.96 | 1.06 | 9.18 | 1.82 |
Δcharge | 0.02 | 0.02 | −0.15 | −0.11 | 0.11 |
Location | N | R(Sc-Ow)avg /Å | R(Sc-Os) a /Å | Eads /KJ·mol−1 |
---|---|---|---|---|
Ou | 4 | 2.13 | 1.95 | −643.68 |
Ol | 4 | 2.13 | 1.94 | −653.32 |
Ot | 4 | 2.17 | 2.00 | −595.68 |
State | Sc | Ol | Sc-Ol a | |||||||
---|---|---|---|---|---|---|---|---|---|---|
s | p | d | Total | Charge | s | p | Total | Charge | ||
Before | 2.14 | 6.01 | 1.25 | 9.40 | 1.60 | 1.91 | 4.96 | 6.87 | −0.87 | 0.48 |
After | 2.16 | 5.94 | 1.12 | 9.22 | 1.78 | 1.86 | 5.12 | 6.98 | −0.98 | |
Δcharge | 0.02 | −0.07 | −0.13 | −0.18 | 0.18 | −0.05 | 0.16 | 0.11 | −0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, K.; Wu, G.; Jiang, D.; Lan, Y. Adsorption of Sc on the Surface of Kaolinite (001): A Density Functional Theory Study. Materials 2023, 16, 5349. https://doi.org/10.3390/ma16155349
Zhao Z, Wang K, Wu G, Jiang D, Lan Y. Adsorption of Sc on the Surface of Kaolinite (001): A Density Functional Theory Study. Materials. 2023; 16(15):5349. https://doi.org/10.3390/ma16155349
Chicago/Turabian StyleZhao, Zilong, Kaiyu Wang, Guoyuan Wu, Dengbang Jiang, and Yaozhong Lan. 2023. "Adsorption of Sc on the Surface of Kaolinite (001): A Density Functional Theory Study" Materials 16, no. 15: 5349. https://doi.org/10.3390/ma16155349
APA StyleZhao, Z., Wang, K., Wu, G., Jiang, D., & Lan, Y. (2023). Adsorption of Sc on the Surface of Kaolinite (001): A Density Functional Theory Study. Materials, 16(15), 5349. https://doi.org/10.3390/ma16155349