Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = hybrid unmanned aerial underwater vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 847 KiB  
Article
Disturbance Observer-Based Robust Take-Off Control for a Semi-Submersible Permeable Slender Hybrid Unmanned Aerial Underwater Quadrotor
by Fei Liao and Dezhang Ye
Appl. Sci. 2023, 13(16), 9318; https://doi.org/10.3390/app13169318 - 16 Aug 2023
Cited by 4 | Viewed by 1216
Abstract
The development of hybrid unmanned aerial underwater vehicles (HAUVs) compatible with the advantages of the aerial vehicles and the underwater vehicles is of great significance. This paper presents the first study on a new HAUV layout using four rotors to realize the medium [...] Read more.
The development of hybrid unmanned aerial underwater vehicles (HAUVs) compatible with the advantages of the aerial vehicles and the underwater vehicles is of great significance. This paper presents the first study on a new HAUV layout using four rotors to realize the medium crossing motion of a transverse slender body similar to the fuselage of a missile or a submarine, that is, the hybrid aerial underwater quadrotor (HAUQ). Then, a robust control strategy is proposed for the take-off HAUQ on the water in the presence of unknown disturbances and complex model dynamic uncertainties. As a semi-submersible HAUQ rises straight from the water, the inside of the slender fuselage placed horizontally is filled with water. The center of the mass, the moment of inertia, and the arm of the force of the HAUQ will change rapidly in the take-off phase from the water because of the rapid nonuniform change in mass caused by the passive fast drainage. It is difficult to establish an accurate mathematical model of the complex dynamic changes caused by the multi-media dynamics, the fast changing buoyancy, and the added mass crossing the air–water surface. Therefore, an uncertain kinematic and dynamic model is established through the passive, fast, nonuniform change and the complex dynamics are considered as the unknown terms, and the external disturbances of gust and other factors are assumed as the bounded disturbance input. A robust design approach is introduced to deal with the fast time-varying mass disturbance based on the input-to-state stability (ISS) theorem. The complex dynamics are estimated using the basis function and the unknown weight parameters, and the adaptive laws are adopted for the on-line estimation of the unknown weight parameters. Considering the residual disturbance of the uncertain nonlinear system as a total disturbance term, a disturbance observer is introduced for disturbance observation. The numerical simulation shows the feasibility and robustness of the proposed algorithm. Full article
(This article belongs to the Special Issue Design and Implementation of Underwater Vehicles)
Show Figures

Figure 1

30 pages, 4601 KiB  
Review
NOMA-Based VLC Systems: A Comprehensive Review
by Syed Agha Hassnain Mohsan, Muhammad Sadiq, Yanlong Li, Alexey V. Shvetsov, Svetlana V. Shvetsova and Muhammad Shafiq
Sensors 2023, 23(6), 2960; https://doi.org/10.3390/s23062960 - 9 Mar 2023
Cited by 48 | Viewed by 8000
Abstract
The enhanced proliferation of connected entities needs a deployment of innovative technologies for the next generation wireless networks. One of the critical concerns, however, is the spectrum scarcity, due to the unprecedented broadcast penetration rate nowadays. Based on this, visible light communication (VLC) [...] Read more.
The enhanced proliferation of connected entities needs a deployment of innovative technologies for the next generation wireless networks. One of the critical concerns, however, is the spectrum scarcity, due to the unprecedented broadcast penetration rate nowadays. Based on this, visible light communication (VLC) has recently emerged as a viable solution to secure high-speed communications. VLC, a high data rate communication technology, has proven its stature as a promising complementary to its radio frequency (RF) counterpart. VLC is a cost-effective, energy-efficient, and secure technology that exploits the current infrastructure, specifically within indoor and underwater environments. Yet, despite their appealing capabilities, VLC systems face several limitations which constraint their potentials such as LED’s limited bandwidth, dimming, flickering, line-of-sight (LOS) requirement, impact of harsh weather conditions, noise, interference, shadowing, transceiver alignment, signal decoding complexity, and mobility issue. Consequently, non-orthogonal multiple access (NOMA) has been considered an effective technique to circumvent these shortcomings. The NOMA scheme has emerged as a revolutionary paradigm to address the shortcomings of VLC systems. The potentials of NOMA are to increase the number of users, system’s capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. Motivated by this, the presented study offers an overview of NOMA-based VLC systems. This article provides a broad scope of existing research activities of NOMA-based VLC systems. This article aims to provide firsthand knowledge of the prominence of NOMA and VLC and surveys several NOMA-enabled VLC systems. We briefly highlight the potential and capabilities of NOMA-based VLC systems. In addition, we outline the integration of such systems with several emerging technologies such as intelligent reflecting surfaces (IRS), orthogonal frequency division multiplexing (OFDM), multiple-input and multiple-output (MIMO) and unmanned aerial vehicles (UAVs). Furthermore, we focus on NOMA-based hybrid RF/VLC networks and discuss the role of machine learning (ML) tools and physical layer security (PLS) in this domain. In addition, this study also highlights diverse and significant technical hindrances prevailing in NOMA-based VLC systems. We highlight future research directions, along with provided insights that are envisioned to be helpful towards the effective practical deployment of such systems. In a nutshell, this review highlights the existing and ongoing research activities for NOMA-based VLC systems, which will provide sufficient guidelines for research communities working in this domain and it will pave the way for successful deployment of these systems. Full article
Show Figures

Figure 1

15 pages, 5523 KiB  
Article
Developing and Field Testing Path Planning for Robotic Aquaculture Water Quality Monitoring
by Anthony Davis, Paul S. Wills, James E. Garvey, William Fairman, Md Arshadul Karim and Bing Ouyang
Appl. Sci. 2023, 13(5), 2805; https://doi.org/10.3390/app13052805 - 22 Feb 2023
Cited by 17 | Viewed by 3969
Abstract
Marine food chains are highly stressed by aggressive fishing practices and environmental damage. Aquaculture has increasingly become a source of seafood which spares the deleterious impact on wild fisheries. However, continually monitoring water quality to successfully grow and harvest fish is labor intensive. [...] Read more.
Marine food chains are highly stressed by aggressive fishing practices and environmental damage. Aquaculture has increasingly become a source of seafood which spares the deleterious impact on wild fisheries. However, continually monitoring water quality to successfully grow and harvest fish is labor intensive. The Hybrid Aerial Underwater Robotic System (HAUCS) is an Internet of Things (IoT) framework for aquaculture farms to relieve the farm operators of one of the most labor-intensive and time-consuming farm operations: water quality monitoring. To this end, HAUCS employs a swarm of unmanned aerial vehicles (UAVs) or drones integrated with underwater measurement devices to collect the in situ water quality data from aquaculture ponds. A critical aspect in HAUCS is to develop an effective path planning algorithm to be able to sample all the ponds on the farm with minimal resources (i.e., the number of UAVs and the power consumption of each UAV). Three methods of path planning for the UAVs are tested, a Graph Attention Model (GAM), the Google Linear Optimization Package (GLOP) and our proposed solution, the HAUCS Path Planning Algorithm (HPP). The designs of these path planning algorithms are discussed, and a simulator is developed to evaluate these methods’ performance. The algorithms are also experimentally validated at Southern Illinois University’s Aquaculture Research Center to demonstrate the feasibility of HAUCS. Based on the simulations and experimental studies, HPP is particularly suited for large farms, while GLOP or GAM is more suited to small or medium-sized farms. Full article
(This article belongs to the Special Issue New Trends in Robotics, Automation and Mechatronics (RAM))
Show Figures

Figure 1

18 pages, 4053 KiB  
Article
Trans-Media Kinematic Stability Analysis for Hybrid Unmanned Aerial Underwater Vehicle
by Tongjin Wei, Di Lu, Zheng Zeng and Lian Lian
J. Mar. Sci. Eng. 2022, 10(2), 275; https://doi.org/10.3390/jmse10020275 - 16 Feb 2022
Cited by 17 | Viewed by 3544
Abstract
In recent years, hybrid unmanned aerial underwater vehicles (HAUVs), which are capable of air–water trans-media motion, have been increasingly developed. For most HAUVs, air–water trans–media motion is a relatively dangerous and difficult process. Therefore, it is of great significance to study the particular [...] Read more.
In recent years, hybrid unmanned aerial underwater vehicles (HAUVs), which are capable of air–water trans-media motion, have been increasingly developed. For most HAUVs, air–water trans–media motion is a relatively dangerous and difficult process. Therefore, it is of great significance to study the particular process. This paper presents the first study on the kinematic stability of the air–water trans–media motion of HAUVs. First, a simplified dynamic model of HAUVs is proposed, including the hydrodynamic forces and the time–varying buoyancy. Then, based on the proposed model and the Hurwitz method, this paper derives the air–water trans–media kinematic stability criterion for HAUVs. This criterion can be applied to most air–water trans–media motions that satisfy the assumptions in this paper. Finally, this paper takes “Nezha”, a novel HAUV, as an example to analyze its air–water trans–media kinematic stability. The results show that the proposed criterion is effective in judging the vehicle’s design, including the geometry and thruster power, which are important factors in the performance of the trans–media process. Full article
(This article belongs to the Special Issue Frontiers in Deep-Sea Equipment and Technology)
Show Figures

Figure 1

18 pages, 9015 KiB  
Article
Application of Unmanned Aerial Vehicles and Image Processing Techniques in Monitoring Underwater Coastal Protection Measures
by Jakub Śledziowski, Paweł Terefenko, Andrzej Giza, Paweł Forczmański, Andrzej Łysko, Witold Maćków, Grzegorz Stępień, Arkadiusz Tomczak and Apoloniusz Kurylczyk
Remote Sens. 2022, 14(3), 458; https://doi.org/10.3390/rs14030458 - 19 Jan 2022
Cited by 18 | Viewed by 3895
Abstract
A prerequisite for solving issues associated with surf zone variability, which affect human activity in coastal zones, is an accurate estimation of the effects of coastal protection methods. Therefore, performing frequent monitoring activities, especially when applying new nature-friendly coastal defense methods, is a [...] Read more.
A prerequisite for solving issues associated with surf zone variability, which affect human activity in coastal zones, is an accurate estimation of the effects of coastal protection methods. Therefore, performing frequent monitoring activities, especially when applying new nature-friendly coastal defense methods, is a major challenge. In this manuscript, we propose a pipeline for performing low-cost monitoring using RGB images, accessed by an unmanned aerial vehicle (UAV) and a four-level analysis architecture of an underwater object detection methodology. First, several color-based pre-processing activities were applied. Second, contrast-limited adaptive histogram equalization and the Hough transform methodology were used to automatically detect the underwater, circle-shaped elements of a hybrid coastal defense construction. An alternative pipeline was used to detect holes in the circle-shaped elements with an adaptive thresholding method; this pipeline was subsequently applied to the normalized images. Finally, the concatenation of the results from both the methods and the validation processes were performed. The results indicate that our automated monitoring tool works for RGB images captured by a low-cost consumer UAV. The experimental results showed that our pipeline achieved an average error of four pixels in the test set. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones)
Show Figures

Figure 1

20 pages, 741 KiB  
Review
A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping
by César Debeunne and Damien Vivet
Sensors 2020, 20(7), 2068; https://doi.org/10.3390/s20072068 - 7 Apr 2020
Cited by 318 | Viewed by 30098
Abstract
Autonomous navigation requires both a precise and robust mapping and localization solution. In this context, Simultaneous Localization and Mapping (SLAM) is a very well-suited solution. SLAM is used for many applications including mobile robotics, self-driving cars, unmanned aerial vehicles, or autonomous underwater vehicles. [...] Read more.
Autonomous navigation requires both a precise and robust mapping and localization solution. In this context, Simultaneous Localization and Mapping (SLAM) is a very well-suited solution. SLAM is used for many applications including mobile robotics, self-driving cars, unmanned aerial vehicles, or autonomous underwater vehicles. In these domains, both visual and visual-IMU SLAM are well studied, and improvements are regularly proposed in the literature. However, LiDAR-SLAM techniques seem to be relatively the same as ten or twenty years ago. Moreover, few research works focus on vision-LiDAR approaches, whereas such a fusion would have many advantages. Indeed, hybridized solutions offer improvements in the performance of SLAM, especially with respect to aggressive motion, lack of light, or lack of visual features. This study provides a comprehensive survey on visual-LiDAR SLAM. After a summary of the basic idea of SLAM and its implementation, we give a complete review of the state-of-the-art of SLAM research, focusing on solutions using vision, LiDAR, and a sensor fusion of both modalities. Full article
(This article belongs to the Special Issue Autonomous Mobile Robots: Real-Time Sensing, Navigation, and Control)
Show Figures

Figure 1

Back to TopTop